SAA-only HDL formed during the acute phase response in apoA-I(+/+) and apoA-I(-/-) mice

Department of Pathology, the University of Chicago, Chicago, IL 60637, USA.
The Journal of Lipid Research (Impact Factor: 4.42). 06/1999; 40(6):1090-103.
Source: PubMed


Serum amyloid A (SAA) is an acute phase protein of unknown function that is involved in systemic amyloidosis and may also be involved in atherogenesis. The precise role of SAA in these processes has not been established. SAA circulates in plasma bound to high density lipoprotein-3 (HDL3). The pathway for the production of SAA-containing HDL is not known. To test whether apolipoprotein (apo)A-I-HDL is required in the production of SAA-HDL, we analyzed the lipopolysaccharide (LPS)-induced changes in apoA-I+/+ and apoA-I-/- mice. In apoA-I+/+ mice, after injection of LPS, remodeling of HDL occurred: total cholesterol increased and apoA-I decreased slightly and shifted to lighter density. Dense (density of HDL3) but large (size of HDL2 ) SAA-containing particles were formed. Upon fast phase liquid chromatography fractionation of plasma, >90% of SAA eluted with HDL that was enriched in cholesterol and phospholipid and shifted "leftward" to larger particles. Non-denaturing immunoprecipitation with anti-mouse apoA-I precipitated all of the apoA-I but not all of the SAA, confirming the presence of SAA-HDL devoid of apoA-I. In the apoA-I-/- mice, which normally have very low plasma lipid levels, LPS injection resulted in significantly increased total and HDL cholesterol. Greater than 90% of the SAA was lipid associated and was found on dense but large, spherical HDL particles essentially devoid of other apolipoproteins.We conclude that serum amyloid A (SAA) is able to sequester lipid, forming dense but large HDL particles with or without apoA-I or other apolipoproteins. The capacity to isolate lipoprotein particles containing SAA as the predominant or only apolipoprotein provides an important system to further explore the biological function of SAA.

Download full-text


Available from: Catherine A Reardon, Mar 03, 2014
  • Source
    • "It is well established that plasma APP are non-specific immune responses and are produced when liver hepatocytes are stimulated by pro-inflammatory cytokines [36]. A number of studies have indicated that SAA released into the systemic circulation binds, neutralizes, and removes LPS from systemic circulation through liver hepatocytes [6], [37]–[39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the effects of repeated oronasal treatment with lipopolysaccharide (LPS) on the humoral immune responses in saliva, vaginal mucus, and the plasma markers of the acute phase response in periparturient dairy cows. One hundred pregnant Holstein cows were administered either 3 increasing doses of LPS (n = 50) as follows: 1) 0.01 µg/kg body weight (BW) on d -28, 2) 0.05 µg/kg BW on d -25, and -21, and 3) 0.1 µg/kg BW on d -18, and -14, or sterile saline solution (controls; n = 50) oronasally for 3 consecutive wk starting at 28 d before parturition. Intensive sampling was conducted on thirty cows (n = 15/group). Multiple saliva, vaginal mucus and blood samples were collected around parturition and analyzed for total immunoglobulin-(Ig)A, plasma serum amyloid A (SAA), lipopolysaccharide-binding protein (LBP), anti-LPS IgA, IgG, IgM, tumour necrosis factor(TNF)-α, and interleukin(IL)-1. Results regarding total secretory IgA (sIgA) antibodies showed greater concentrations in the saliva and an overall tendency for higher total sIgA in the vaginal mucus of the LPS-treated cows. Treatment had no effect on plasma sIgA, IgG, IgM anti-LPS antibodies, haptoglobin, SAA, LBP, TNF-α, and IL-1. Treatments by time interactions were observed for SAA and IL-1 with lowered concentrations of both variables in the plasma of LPS-treated cows after parturition. Overall, repeated oronasal LPS treatment clearly enhanced total sIgA antibodies in the saliva, stimulated their production in vaginal mucus shortly before calving, and lowered plasma IL-1 around parturition, but showed limited effects on markers of the acute phase response in the plasma in dairy cows around parturition.
    Full-text · Article · Jul 2014 · PLoS ONE
  • Source
    • "Because LBP was reported only in few studies, this variable was not considered in the analysis of this study. The known role of LBP is to facilitate clearance of endotoxin from blood circulation (Schroedl et al., 2001), whereas SAA contributes directly to its neutralization and removal from circulation through liver hepatocytes (Cabana et al., 1999). Haptoglobin is released by the latter cells during bacterial translocation, and its primary function is to bind plasma free hemoglobin, released during hemolysis of red blood cells, and prevent utilization of iron contained in the hemoglobin by translocated bacteria (Wassell, 2000). "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the extent by which changes in the concentrate level and neutral detergent fiber (NDF) content in the diet as well as the severity of acidotic insult, measured as the duration time of rumen pH below 6.0 and daily mean rumen pH, and the concentration of endotoxin in the rumen fluid are involved in the development of inflammatory conditions in cattle. A meta-analytical approach accounting for inter- and intraexperimental variation was used to generate prediction models, and data from recent studies were used to parameterize these models. A total of 10 recently conducted experiments with 43 different dietary treatments fulfilled the criteria for inclusion in this study. Diets of all of the experiments included in this meta-analysis were based on rapidly degradable grain sources, such as barley and wheat, and the findings of this study apply only to these kinds of diets. Data indicated that greater levels of concentrate in the diet were associated with increased concentrations of rumen endotoxin (R(2)=0.27), plasma haptoglobin (R(2)=0.19), and serum amyloid A (SAA) level (R(2)=0.46). Similar correlations, but in opposite directions, were observed between dietary NDF content and rumen endotoxin (R(2)=0.39) and plasma SAA concentrations (R(2)=0.22). The meta-analysis revealed that the relationships between those variables were not linear. Additionally, the breakpoint model fitted to the data of rumen endotoxin, plasma haptoglobin, and SAA indicated the presence of a threshold level of dietary concentrate and NDF, above which those responses became linear to increasing amounts of concentrate or decreasing contents of NDF in the diet. Also, feeding cattle more than 44.1% concentrate or less than 39.2% NDF in the diet was associated with a linear increase in the risk of systemic inflammation. Low daily mean rumen pH (R(2)=0.38) and duration of rumen pH <6.0 (R(2)=0.59) were associated with increased concentrations of endotoxin in the rumen fluid; although those events were not always associated with systemic inflammation. Accordingly, only 15 to 21% of the overall variation in the responses of SAA was explained by variables of rumen pH, whereas the concentrate level in the diet accounted for 46% of this variation. In conclusion, data from this study indicated the presence of thresholds of dietary concentrate and NDF levels in the diets based on rapidly fermentable grains beyond which the risk of systemic inflammation in cattle increases linearly.
    Full-text · Article · May 2012 · Journal of Dairy Science
  • Source
    • "sma Fe and cir - culating SAA observed in this study is in agreement with another investigation in horses reporting similar associations between these 2 variables during postoper - ative inflammatory conditions ( Jacobsen et al . , 2005 ) . Although SAA is known to be directly involved in the binding , neutralization , and clearance of endotoxin ( Cabana et al . , 1999 ) , we observed a negative nonlin - ear response of plasma Fe to circulating amounts of SAA . This suggests that regulation of Fe homeostasis during inflammation is less dependent on circulating SAA when concentrations of SAA exceed 20 µg / mL . The data also revealed an association between SAA and plasma Zn and Cu , which might be rela"
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this investigation was to determine associations among rumen endotoxin, plasma serum amyloid A (SAA), and C-reactive protein (CRP) with plasma Ca, Fe, Zn, and Cu in lactating cows challenged with graded amounts of rolled barley grain in the diet (i.e., 0, 15, 30, and 45% of DMI). Correlative relationships among variables were determined by linear and nonlinear regression procedures adjusted for the effects of day, animal, and experimental period. Increasing the amount of grain in the diet was successful in inducing an acute phase response, as assessed by augmentation of rumen endotoxin and plasma CRP and SAA (P < 0.01). The correlative analysis revealed inverse, nonlinear relationships of rumen endotoxin and plasma SAA with circulating Ca. Interestingly, plasma Ca reached the asymptotic plateau at 10.6 mg/dL. The increase in rumen endotoxin was associated with an abrupt decrease in plasma Fe (R(2) = 0.91; P < 0.001). A similar relationship, although at a reduced estimation accuracy (R(2) = 0.21; P < 0.01), was observed between rumen endotoxin and plasma Zn. Augmentation of rumen endotoxin and plasma CRP resulted in a positive, biphasic response of plasma Cu. In conclusion, the increase in rumen endotoxin in response to high-grain diets, and the resulting increases in plasma SAA and CRP, were strongly correlated with fluctuations of plasma minerals. Results suggest that new feeding strategies should be developed to curb the release of endotoxin in the rumen fluid to prevent perturbing minerals in the plasma.
    Full-text · Article · Dec 2009 · Journal of Animal Science
Show more