In a preliminary report we demonstrated an association between the slow acetylator genotype of N-acetyltransferase 2 (NAT2) and familial cases of Parkinson's disease (FPD). Using a considerably more precise NAT2 typing method, which detects all mutant NAT2 alleles with a frequency of >1% in the white population, we have now retyped all the original patients and control subjects to investigate the
... [Show full abstract] reliability of our initial findings. The slow acetylator genotype remained considerably more common among FPD (73%) than normal control subjects (NPC, 43%) or the disease (Huntington's disease [HD]) control group (52%) with an odds ratio (OR) of 3.58 (95% confidence interval (CI): 1.96-6.56; p = 0.00003) for FPD versus NPC and an OR of 2.50 (95% CI: 1.37-4.56, p = 0.003) for FPD versus HD. Furthermore, the wild-type allele 4 conferred a protective effect with an OR of 0.39 (95% CI: 0.23-0.64; p = 0.0025) for FPD versus NPC and an OR of 0.50 (95% CI: 0.30-0.85, p = 0.01) for FPD versus HD. The results of this study support an association between the NAT2 slow acetylator genotype and FPD in our population.