Article

Enhanced proteolytic activity directed against the N-terminal of IGF-I in diabetic rats.

Departments of Internal Medicine and Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3.
Journal of Endocrinology (Impact Factor: 3.72). 09/1999; 162(2):243-50.
Source: PubMed

ABSTRACT

We have recently identified in serum an acid protease which is capable of generating des(1-3)IGF-I from intact IGF-I. Here we have utilized a synthetic substrate with the sequence, biotin-G-P-E-T-L-C-BSA which contains the N-terminal sequence of IGF-I, to investigate the levels of this protease activity in streptozotocin-diabetic rats. Protease activity, quantified in terms of the amount of the biotin label lost, was determined in serum and hepatic extracts from normal control rats, diabetic rats and insulin-treated diabetic rats. Both the serum protease activity and protease activity in hepatic extracts were significantly increased in diabetic rats compared with control rats (P<0.02 and P<0.005). Following acute administration of insulin, a rapid and marked reduction in serum protease activity was observed; with an approximately 50% reduction apparent at 30 min (P<0.001). Chronic insulin treatment of diabetic rats also significantly reduced the serum and hepatic protease activity to the levels seen in control rats. A positive correlation between protease activity and serum glucose level was observed (r=0.58, P<0.005). The abundance of Spi 2.1 mRNA, a serine protease inhibitor, capable of inhibiting the IGF-I protease activity in vitro, was significantly decreased in the liver of diabetic rats and insulin treatment of diabetic rats did not normalize Spi 2.1 mRNA levels. These data suggest that the conversion of IGF-I to the more active des(1-3)IGF-I variant may be enhanced in diabetic animals. Since serum IGF-I levels are reduced in diabetic rats, increased des(1-3)IGF-I-generating protease activity would enhance the functional activity of the circulating IGF-I.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The overall increase in proteolytic activity in diabetes is known to be associated with the development and progression of vascular complications. Our aim was to investigate in detail the molecular nature of this activity in the plasma of Type 1 diabetic subjects. Plasma of both diabetic and control subjects was subjected to various purification procedures (ion exchange and affinity chromatography, HPLC, immunoprecipitation, electrophoresis, immunoblot and mass analyses) to identify the proteins of interest. Biological activities were measured on specific substrates. In diabetic but not normal plasma we identified the presence of two heat shock proteins, Grp94 (Glucose-regulated protein94) and HSP70. The higher-than-normal proteolytic activity of Grp94 was: (i) directed against casein, but not against endogenous plasma proteins; (ii) fully and specifically inhibited only by anti-Grp94 polyclonal antibodies; and (iii) coupled with low-level ATPase activity. In addition, ATP binding to Grp94 was able to modulate proteolytic activity. We found that Grp94 in plasma circulates only as high molecular mass homo- and hetero-complexes, the latter mostly formed with IgG to which Grp94 is also linked by tenacious binding. Proteolytically-active Grp94 was purified by immunoprecipitation, which co-immunoprecipitated alpha(1)antitrypsin. Our results show the unexpected extracellular location and characteristic biological function of Grp94 even at a late stage of disease. These findings have physiopathological relevance for predicting activation of both autoimmune and inflammatory processes potentially associated with vascular complications.
    Full-text · Article · Aug 2003 · Diabetologia
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-like growth factor-1 (IGF-1) is neuroprotective and improves long-term function after brain injury. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake and mitogenic potential. Glycine-proline-glutamate (GPE) is naturally cleaved from the IGF-1 N-terminal and it is also neuroprotective after ischemic injury, which provided a novel strategy of drug discovery for neurological disorders. GPE is not enzymatically stable, thus intravenous infusion of GPE becomes necessary for stable and potent neuroprotection. The broad effective dose range and treatment window of 3-7 h after the lesion suggest its potential for treating acute brain injuries. G-2meth-PE, a GPE analogue designed to be more enzymatic resistant, has a prolonged plasma half-life and is more potent in neuroprotection. Neuroprotection by GPE and its analogue may involve modulation of inflammation, promotion of astrocytosis, inhibition of apoptosis and vascular remodelling. Acute administration of GPE also prevents 6-OHDA-induced nigrostrial dopamine depletion. Delayed treatment with GPE does not prevent dopamine loss, but improves long-term function. Cyclo-glycyl-proline (cyclic Gly-Pro) is an endogenous DKP that may be derived from GPE. Cyclic Gly-Pro and its analogue cyclo-L-glycyl-L-2-allylproline (NNZ 2591) are both neuroprotective after ischaemic injury. NNZ2591 is highly enzymatic resistant and centrally accessible. Its peripheral administration improves somatosensory-motor function and long-term histological outcome after brain injury. Our research suggests that small neuropeptides have advantages over growth factors in the treatment of brain injury, and that modified neuropeptides designed to overcome the limitations of their endogenous counterparts represent a novel strategy of pharmaceutical discovery for neurological disorders.
    Full-text · Article · Jun 2009 · British Journal of Pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-Like Growth Factor-1 (IGF-1) is neuroprotective and improves long-term function after brain injury. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake, and mitogenic potential. Glycine-proline-glutamate (GPE) is naturally cleaved from the IGF-1 N-terminal and is also neuroprotective after ischemic injury, thus providing a potential novel strategy of drug discovery for management of neurological disorders. GPE is not enzymatically stable, thus intravenous infusion of GPE becomes necessary for stable and potent neuroprotection. The broad effective dose range and treatment window of 3-7 h after the lesion suggest its potential for treating acute brain injuries. The neuroprotective action of GPE is not age selective, is not dependent on cerebral reperfusion, plasma glucose concentrations, and core body temperature. G-2mPE, a GPE analogue designed to be more resistant to enzymatic activity, has a prolonged plasma half-life and is more potent in neuroprotection. Neuroprotection by GPE and its analogue may be involved in modulation of inflammation, promotion of astrocytosis, inhibition of apoptosis, and in vascular remodeling. Small neuropeptides have advantages over growth factors in the treatment of brain injury, and modified neuropeptides, designed to overcome the limitations of their endogenous counterparts, represent a novel strategy of pharmaceutical discovery for neurological disorders.
    No preview · Article · Mar 2010 · CNS Neuroscience & Therapeutics
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.