ArticlePDF AvailableLiterature Review
Simopoulos AP (ed): Evolutionary Aspects of Nutrition and Health.
Diet, Exercise, Genetics and Chronic Disease.
World Rev Nutr Diet. Basel, Karger, 1999, vol 84, pp 19–73
Cereal Grains:
Humanity’s Double-Edged Sword
Loren Cordain
Department of Exercise and Sport Science, Colorado State University, Fort Collins,
Colo., USA
‘Here is bread, which strengthens man’s heart, and therefore called the staof life’
(Mathew Henry: 1662–1714, Commentary on Psalm 104)
‘Man cannot live on bread alone’ (Bible, Matthew 4:4)
20 Introduction
22 Archaeological Perspective
24 Dietary Imbalances of Cereal Grains
26 Vitamins A, C and Beta-Carotene
27 B Vitamins
29 Minerals
34 Essential Fatty Acids
36 Amino Acids
41Antinutrients in Cereal Grains
43 Alkylresorcinols
43 Alpha-Amylase Inhibitors
44 Protease Inhibitors
45 Lectins
47 Autoimmune Diseases and Cereal Grain Consumption
48 Autoimmunity
49 Molecular Mimicry
49 Genetic and Anthropological Factors
51Autoimmune Diseases Associated with Cereal Grain Consumption
56 Psychological and Neurological Illnesses Associated with Cereal Grain Consumption
58 Conclusions
60 Acknowledgments
60 References
The number of plant species which nourish humanity is remarkably lim-
ited. Most of the 195,000 species of flowering plants produce edible parts
which could be utilized by man; however less than 0.1% or fewer than 300
species are used for food. Approximately 17 plant species provide 90% of
mankind’s food supply, of which cereal grains supply far and away the greatest
percentage (tables 1, 2). From table 1, it can be shown that the world’s four
major cereal grains (wheat, maize, rice and barley) contribute more tonnage
Table 1 . The world’s top 30 food crops
(estimated edible dry matter) Million metric tons
1 Wheat 468
2 Maize 429
3 Rice 330
4 Barley 160
5 Soybean 88
6 Cane sugar 67
7 Sorghum 60
8 Potato 54
9Oats 43
10 Cassava 41
11 Sweet potato 35
12 Beet sugar 34
13 Rye 29
14 Millets 26
15 Rapeseed 19
16 Bean 14
17 Peanut 13
18 Pea 12
19 Musa 11
20 Grape 11
21 Sunflower 9.7
22 Yams 6.3
23 Apple 5.5
24 Coconut 5.3
25 Cottonseed (oil) 4.8
26 Orange 4.4
27 Tomato 3.3
28 Cabbage 3.0
29 Onion 2.6
30 Mango 1.8
Adapted from Harlan [3].
to humanity’s food supply than the next 26 crops combined. Eight cereal
grains: wheat, maize, rice, barley, sorghum, oats, rye, and millet provide 56%
of the food energy and 50% of the protein consumed on earth [1]. Three
cereals: wheat, maize and rice together comprise at least 75% of the world’s
grain production (table 1). It is clear that humanity has become dependent
upon cereal grains for the majority of its food supply. As Mangelsdorf [2] has
pointed out, ‘cereal grains literally stand between mankind and starvation’;
therefore, it is essential that we fully understand the nutritional implications
of cereal grain consumption upon human health and well being.
Modern man has become so dependent upon eating cereal grains (grass
seeds) that it has prompted at least one author [3] to say that we have become
‘canaries’. However, this has not always been the case. For the vast majority
of mankind’s presence on this planet, he rarely if ever consumed cereal grains
[4]. With the exception of the last 10,000 years following the agricultural
‘revolution’, humans have existed as non-cereal-eating hunter-gatherers since
the emergence of Homo erectus 1.7 million years ago. Although the first
anatomically modern humans (Homo sapiens) appeared in Africa ?90,000
years ago, humans prior to the mesolithic period (~15,000 years ago) like
other primates rarely if ever utilized cereal grains [4]. Post-pleistocene (~10,000
years ago) hunter-gatherers occasionally consumed cereal grains; however
these foods were apparently not major dietary components for most of the
year [5]. It is apparent that there is little or no evolutionary precedent in our
species for grass seed consumption [6–8]. Consequently, we have had little
time (=500 generations) since the inception of the agricultural revolution
10,000 years ago to adapt to a food type which now represents humanity’s
major source of both calories and protein.
The sum of evidence indicates that the human genetic constitution has
changed little in the past 40,000 years [7]. The foods which were commonly
Table 2 . Food group totals (estimated edible dry matter)
Million metric tons
1 Cereals 1,545
2 Tubers 136
3 Pulses 127
4 All meats, milk and eggs 119
5 Sugar 101
6 Fruits 34
Adapted from Harlan [3].
21Cereal Grains: Humanity’s Double-Edged Sword
Table 3. Key events in the development of agriculture and domestication of cereal grains
Event Time from present Location
Development of agriculture 10,000 Near East
8,000 Greece, West Africa
7–8,000 Central and S. America
7,000 China, India and SE Asia
6,500 Paris basin
6,000 Central Africa
5,500 Scandinavia, England
Domestication of wheat and barley 10,000 Near East
Domestication of rice 7,000 China, India and SE Asia
Domestication of maize 7,000 Central and S. America
Domestication of millets 5–6,000 Africa
Domestication of sorghum 5–6,000 East Africa
Domestication of rye 5,000 SW Asia
Domestication of oats 3,000 Europe
available to preagricultural man were the foods which shaped modern man’s
genetic nutritional requirements. Although our genetically determined nutri-
tional needs have changed little in the past 40,000 years, our diet has changed
dramatically since the advent of agriculture 10,000 years ago [7]. Cereal grains
as a staple food are a relatively recent addition to the human diet (table 3) and
represent a dramatic departure from those foods to which we are genetically
adapted. Discordance between humanity’s genetically determined dietary
needs and his present day diet is responsible for many of the degenerative
diseases which plague industrial man [9]. Although cereal grains are associated
with virtually every highly developed civilization in mankind’s history and
now occupy the base of the present day food selection pyramid in the United
States [10], there is a significant body of evidence which suggests that cereal
grains are less than optimal foods for humans and that the human genetic
makeup and physiology may not be fully adapted to high levels of cereal grain
Archaeological Perspective
At the close of the paleolithic era and during the mesolithic period (20,000–
10,000 years ago), there was a widescale extinction of large mammals through-
out Europe, North America and Asia [11] that coincided with a fundamental
change in how hunter-gatherer’s made use of their environment and obtained
their food sources. People all over the world began to adopt a broader spectrum
of hunting and gathering which more fully utilized all niches in their environ-
ment. Tools and weapons became smaller, more elegant and more ecient
[3]. The aquatic environment was increasingly exploited via boats, canoes,
harpoons, fish nets, hooks and weirs. Birds and waterfowl began to appear
more frequently in the fossil record associated with man’s food supply. For
the first time (15,000 years ago) grindstones and crude mortars appeared in
the archaeological record in the near east [6], thereby heralding the beginnings
of humanity’s use of cereal grains for food. Since wild cereal grains are small,
dicult to harvest and minimally digestible without processing (grinding) and
cooking [5, 12, 13], the appearance of stone-processing tools is an essential
indication of when and where cultures began to include cereal grains in their
As human population numbers increased following the pleistocene (10,000
years ago) and as large grazing herbivores became either extinct or severely
depleted, humanity became more and more reliant upon small mammals, fish,
fowl and gathered plant foods to supply his caloric needs. Gradually, as these
resources became depleted, in the face of increasing human population num-
bers, agriculture became the dominant way of life, and cereal grains became
the dominant caloric and protein source in many, but not all prehistoric
cultures [3, 14]. Whereas hunter-gatherers derived most of their calories from
a diversity of wild animal meats, fruits and vegetables encompassing between
100 and 200 or more species [15], agricultural man became primarily dependent
upon a few staple cereal foods, 3–5 domesticated meats and between 20 and
50 other plant foods. In many third-world countries and in a number of
historical agrarian societies, a single cereal staple could provide up to 80% or
more of the daily caloric intake with few or no calories regularly coming from
animal sources [7, 16].
Generally, in most parts of the world, whenever cereal-based diets were
first adopted as a staple food replacing the primarily animal-based diets of
hunter-gatherers, there was a characteristic reduction in stature [4, 17–19], an
increase in infant mortality [19, 20], a reduction in lifespan [19, 20], an increased
incidence of infectious diseases [19–22], an increase in iron deficiency anemia
[19, 20, 22], an increased incidence of osteomalacia, porotic hyperostosis and
other bone mineral disorders [4, 19, 20, 22] and an increase in the number of
dental caries and enamel defects [19, 20, 23]. In a review of 51 references
examining human populations from around the earth and from diering chro-
nologies, as they made the transition from hunter-gatherers to farmers, Cohen
[19] concluded that there was anoverall decline in both the qualityand quantity
of life. There is now substantial empirical and clinical evidence to indicate that
23Cereal Grains: Humanity’s Double-Edged Sword
many of these deleterious changes may be directly related to the predominantly
cereal-based diet of these early farmers.
Cereal grains truly represent humanity’s double-edged sword, for without
them we likely would not have had an agricultural ‘revolution’. We surely
would not be able to sustain the enormous present-day human population
(?6 billion), nor would there likely have been societal stratification which
ultimately was responsible for the vast technological/industrial culture in which
we live [21]. The enormous increase in human knowledge would probably never
had taken place had it not been for the widespread adoption of agriculture by
humanity, and our understanding of medicine, science and the universe is
a direct outcome of the societal stratification wrought by the agricultural
‘revolution’ [21]. On the other hand, agriculture is generally agreed to be
responsible for many of humanity’s societal ills including whole-scale warfare,
starvation, tyranny, epidemic diseases, and class divisions [21]. Cereals provide
the major caloric and protein source for humanity and therefore are the
mainstay of agriculture; they have allowed man’s culture to grow and evolve
so that man has become earth’s dominant animal species, but this preeminence
has not occurred without cost. Because of cereal grains mankind has dramatic-
ally altered his original culture; moreover cereal grains have fundamentally
altered the foods to which our species had been originally adapted over eons
of evolutionary experience. For better or for worse, we are no longer hunter-
gatherers, however our genetic makeup is still that of a paleolithic hunter-
gatherer, a species whose nutritional requirements are optimally adapted to
wild meats, fruits and vegetables, not to cereal grains. We have wandered down
a path toward absolute dependence upon cereal grains, a path for which there
is no return. It is critical that we fully understand the nutritional shortcomings
of cereal grains as we proceed.
Dietary Imbalances of Cereal Grains
All cereal grains have significant nutritional shortcomings which are
apparent upon analysis. From table 4 it can be seen that cereal grains contain
no vitamin A and except for yellow maize, no cereals contain its metabolic
precursor, beta-carotene. Additionally, they contain no vitamin C, or vitamin
. In most western, industrialized countries, these vitamin shortcomings
are generally of little or no consequence, since the average diet is not
excessively dependent upon grains and usually is varied and contains meat
(a good source of vitamin B
), dairy products (a source of vitamins B
and A), and fresh fruits and vegetables (a good source of vitamin C and
Table 4. Vitamin and mineral content of eight unprocessed cereal grains (100-gram
Wheat Maize Rice Barley Sorghum Oats Rye Millet
, mg 0.38 0.39 0.40 0.65 0.24 0.76 0.32 0.42
(35%) (35%) (36%) (59%) (22%) (69%) (29%) (38%)
, mg 0.12 0.20 0.09 0.29 0.14 0.14 0.25 0.29
(9%) (15%) (7%) (22%) (11%) (11%) (19%) (22%)
, mg 5.47 3.63 5.09 4.60 2.92 0.96 4.27 4.72
(36%) (24%) (34%) (31%) (20%) (6%) (28%) (31%)
, mg 0.30 0.62 0.51 0.32 n.a. 0.12 0.29 0.38
(21%) (39%) (32%) (20%) (n.a.) (7%) (18%) (24%)
Folate, mg 38.2 19.0 19.5 19.0 n.a. 56.0 59.9 85.0
(21%) (11%) (11%) (11%) (n.a.) (31%) (33%) (47%)
Pantothenic acid, mg 0.95 0.42 1.49 0.28 n.a. 1.35 1.46 0.85
(17%) (8%) (27%) (5%) (n.a.) (24%) (26%) (15%)
Biotin n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
(n.a.) (n.a.) (n.a.) (n.a.) (n.a.) (n.a.) (n.a.) (n.a.)
E, mg n.a. 0.49 0.68 0.57 n.a. 1.09 1.28 0.05
(n.a.) (6%) (9%) (7%) (n.a.) (14%) (16%) (1%)
Potassium, mg 363 287 223 452 350 429 264 195
(18%) (14%) (11%) (23%) (17%) (21%) (13%) (10%)
Sodium, mg 2 35 7 12 6 2 6 5
(0%) (1%) (0%) (1%) (0%) (0%) (0%) (0%)
Calcium, mg 29.0 7.0 23.0 33.0 28.0 53.9 33.0 8.0
(4%) (1%) (3%) (4%) (4%) (7%) (4%) (1%)
Phosphorus, mg 288 210 333 264 287 523 374 285
(36%) (26%) (42%) (33%) (36%) (65%) (47%) (36%)
Magnesium, mg 126 127 143 133 n.a. 177 121 114
(45%) (45%) (51%) (48%) (n.a.) (63%) (43%) (41%)
Iron, mg 3.19 2.71 1.47 3.60 4.40 4.72 2.67 3.01
(21%) (18%) (10%) (24%) (29%) (31%) (18%) (20%)
Zinc, mg 2.65 2.21 2.02 2.77 n.a. 3.97 3.73 1.68
(22%) (18%) (17%) (23%) (n.a.) (33%) (31%) (14%)
Copper, mg 0.43 0.31 0.27 0.50 n.a. 0.63 0.45 0.75
(19%) (14%) (12%) (22%) (n.a.) (28%) (20%) (33%)
Manganese, mg 3.98 0.46 3.75 1.95 n.a. 4.92 2.68 1.63
(114%) (14%) (107%) (56%) (n.a.) (140%) (77%) (47%)
Selenium, mg 0.043 0.004 n.a. 0.066 n.a. n.a. n.a. n.a.
(78%) (8%) (n.a.) (120%) (n.a.) (n.a.) (n.a.) (n.a.)
Values in (parentheses) represent RDA %. n.a.>Not available. No detectable amounts
of vitamins A, C, D, B
in any grain.
25Cereal Grains: Humanity’s Double-Edged Sword
However, as more and more cereal grains are included in the diet, they
tend to displace the calories that would be provided by other foods (meats,
dairy products, fruits and vegetables), and can consequently disrupt adequate
nutritional balance. In some countries of Southern Asia, Central America,
the Far East and Africa cereal product consumption can comprise as much
as 80% of the total caloric intake [16], and in at least half of the countries of
the world, bread provides more than 50% of the total caloric intake [16]. In
countries where cereal grains comprise the bulk of the dietary intake, vitamin,
mineral and nutritional deficiencies are commonplace.
Vitamins A, C and Beta-Carotene
Vitamin A deficiency remains one of the major public health nutritional
problems in the third world [24]. Twenty to 40 million children worldwide are
estimated to have at least mild vitamin A deficiency [25]. Vitamin A deficiency
is a leading cause of xerophthalmia and blindness among children and also
a major determinant of childhood morbidity and mortality [26]. In virtually
all infectious diseases, vitamin A deficiency is known to result in greater
frequency, severity, or mortality [27]. A recent meta-analysis [28] from 20
randomized controlled trials of vitamin A supplementation in third world
children has shown a 30–38% reduction in all cause mortality in vitamin A-
supplemented children. Analysis of cause-specific mortality showed vitamin
A supplementation elicited a reduction in deaths from diarrheal disease by
39%, from respiratory disease by 70% and from all other causes of death by
34% [28]. Clearly, the displacement of beta-carotene-containing fruits and
vegetables and vitamin A-containing foods (milk fat, egg yolks and organ
meats) by excessive consumption of cereal grains plays a major role in the
etiology of vitamin A deficiency in third world children.
In numerous epidemiologic studies, an increased intake of fruits and
vegetables has been associated with a reduced risk of many types of cancer
[29, 30] and coronary heart disease (CHD) [31, 32]. Much of the evidence for
the link between fruit, vegetables and cancer and CHD points to those foods
rich in antioxidants, including vitamin C, carotenoids and phytochemicals. In
the United States, an estimated 45% of the population had no servings of
fruit or juice, and 22% had no servings of a vegetable on any given day
[33]. Further, 91% of the adult population did not meet the United States
Department of Agriculture’s daily recommendation of 2–3 servings of fruit
and 3–5 servings of vegetables [33]. Although frank vitamin C deficiency is
virtually unknown in the United States and other western countries, it has
been shown to be common in portions of rural India wherein cereals and
pulses comprise the dietary mainstays, and vitamin C-rich fruits and vegetables
are consumed in low quantities [34]. Again, since cereal grains contain unde-
tectable amounts of vitamin C and carotenoids, they tend to displace foods
rich in these substances; foods which are associated with a decreased risk for
many common cancers [35] and heart disease [31, 32].
Cereal- and pulse-based diets of the third world generally tend to be
considerably lower in both total fat, saturated fat and cholesterol than the
meat-based diets of western countries [36], yet paradoxically, CHD mortality
is in some cases either higher [36] or similar [36, 37] to that in western countries.
Since the antioxidant status of CHD-prone individuals chronically consuming
cereal- and pulse-based diets has been shown to be low [36, 38], and increased
consumption of fruit and vegetables has been shown to improve the CHD
risk profile of this population [39], it is likely that high cereal grain consumption
partially contributes to increased CHD mortality via its displacement of anti-
oxidant rich fruits and vegetables.
B Vitamins
Diets based primarily or wholly upon plant food sources tend to be either
low or deficient in vitamin B
, since this nutrient is found exclusively in animal
products [40]. Vitamin B
deficiency causes a megaloblastic anemia which
ultimately results in cognitive dysfunction via its irreversible impact on the
neurological system [41]. Additionally, it is known that a chronic B
produces elevated homocysteine levels [42, 43] which are an important risk
factor for arterial vascular disease and thrombosis [43, 44]. Vitamin B
ciency is generally assumed to be uncommon because omnivorous diets provide
adequate intake, and the vitamin is conserved eciently by the enterohepatic
circulation [40]. However, in countries such as India in which the diets are
mainly cereal and pulse based, vitamin B
deficiencies are common [45, 46].
Additionally, even if minimal amounts of animal-based foods are consumed
along with traditional cereal- and pulse-based diets, intestinal infection, which
is widespread in the third world, has been shown to worsen an already compro-
mised B
status and result in widespread B
deficiencies [47]. The human
nutritional requirement for vitamin B
clearly demonstrates that vegetarian
diets based entirely upon cereal grains, legumes and other plant foods were
not the sole dietary components which shaped the human genome.
Many nutritionists consider cereal grains to be good sources of most of
the B vitamins except for vitamin B
. Inspection of table 4 generally is support-
ive of this concept, at least in terms of the % RDA which cereal grains contain.
However, of more importance is the biological availability of the B vitamins
contained within cereal grains and their B vitamin content after milling,
processing and cooking. It is somewhat ironic that two of the major B vitamin
deficiency diseases which have plagued agricultural man (pellagra and beriberi)
are almost exclusively associated with excessive consumption of cereal grains.
27Cereal Grains: Humanity’s Double-Edged Sword
Beriberi occurs from a thiamin deficiency which is associated with polished
rice consumption. In the late 1800s, with the introduction of polished rice,
beriberi reached epidemic proportions in Japan and other countries in South-
east Asia [48]. Human crossover experiments done in the early part of this
century induced beriberi in subjects fed polished rice, but not in those fed
brown rice [48]. The removal of the outer thiamin-containing coat of the rice
kernel during the polishing process was found to be the factor responsible for
inducing beriberi in rice-eating populations [48]. Beriberi has been largely
eliminated with the advent of ‘enriched rice’ to which thiamin is added, but
still occurs in some African countries whose populations consume high quanti-
ties of polished rice [49].
Pellagra is thought to be a multiple deficiency disease caused by a lack of
niacin and the essential amino acid tryptophan [14], and occurs almost exclus-
ively in people eating corn as their staple food. In the United States between
1906 and 1940 there was an epidemic of pellagra in the southern states which
resultedinapproximately3 million caseswith at least 100,000 deaths[50].Similar
epidemicshave occurred in Europe and India [51], and pellagraisstillwidespread
in parts of Africa [52, 53]. Although administration of niacin is known to rapidly
eliminate all symptoms of pellagra, there is a continuing suspicion that not all
of the precipitating factors which operate in maize to elicit overt symptoms of
pellagra are understood [54, 55]. Traditional lime-processing techniques of corn
(boiling of dried corn flour for 30–50 min in a 5% lime water solution) prevents
pellagra, and it is thought to do so by increasing niacin’s availability [14]. How-
ever, a modern study [55] recently reanalyzed historical pellagra-inducing diets
and even after correcting for niacin’s low availability, found these diets to be
adequate in niacin equivalents (niacin+0.0166tryptophan), suggesting that
factors in corn other than low niacin and tryptophan were responsible for the
disease.Corn,likeallcerealgrains,isrichinantinutrientsincludinglectins which
are known to decrease intestinal absorption of many key nutrients [56, 57]. Since
villous atrophy of the small intestine has been demonstrated in patients with
pellagra [58], it is possible that certain antinutrients in maize could interfere
with intestinal absorption of both niacin and tryptophan or that plasma-borne
antinutrients could interfere with the conversion of tryptophan to niacin similar
to the eects of isoniazid, an anti-tuberculous drug which is known to produce
pellagra-like symptoms [59].
Although table 4 suggests that most cereal grains except for oats are
relatively good sources of vitamin B
, the bioavailability of B
from cereal
grains tends to be low, whereas bioavailability of B
from animal products is
generally quite high, approaching 100% [60]. Vitamin B
exists in foods as
three nonphosphorylated forms (pyridoxine, pyridoxal and pyridoxamine) and
two phosphorylated forms of pyridoxal and pyridoxamine. An additional
glycosylated adduct of pyridoxine, pyridoxine glucoside, occurs widely in cereal
grains and has been shown to reduce the bioavailability of both nonphos-
phorylated and phosphorylated forms of vitamin B
by 75–80% [60, 61]. The
presence of pyridoxine glucoside in cereal grains has an overall eect of
depressing the vitamin B
nutritional status [62]. Data from Nepalese vege-
tarian lactating women has shown a low vitamin B
status for both the mothers
and their infants which was partially attributed to the high levels of pyridoxine
glucosides found in their cereal-, legume- and plant-based diet [60]. B
ciencies appear to be quite common in populations utilizing cereals and pulses
as staples [63, 64]. Low tissue levels of vitamin B
, like vitamin B
are known
to elevate plasma homocysteine levels and increase the risk for arterial vascular
disease [43]. To date, plasma homocysteine levels have not been evaluated in
cereal- and pulse-eating populations of the Indian subcontinent wherein there
is a high mortality rate from CHD [36].
Perhaps the least studied of the B complex vitamins is biotin. Animal
studies have shown that most cereal grains except maize have very low levels
of bioavailable biotin [65, 66], whereas foods derived from animal sources
have a high biotin digestibility [66]. Both wheat and sorghum not only have
a low biotin bioavailability, but seem to have elements within them which
seem to elicit a depression of biotin metabolism [66]. The enzyme, biotinidase,
recycles the biotin derived from the turnover of the biotin-dependent car-
boxylases and from exogenous protein-bound dietary biotin (fig. 1). Whether
or not antinutrients present in cereal grains interfere with biotinidase is not
known. However, the biotin-dependent carboxylases are important metabolic
pathways of fatty acid synthesis. A biotin deficiency severely inhibits the chain
elongation and desaturation of linoleic acid to arachidonic acid [67] (fig. 2),
and biotin-deficient rats are known to exhibit prominent cutaneous symptoms
including scaling, seborrheic dermatitis and alopecia [68], symptoms which
are identical in humans with biotin and biotinidase deficiencies. Recent human
biotin supplementation trials have shown this vitamin to reduce fingernail
brittleness [69]. Anecdotal evidence has suggested that subjects who had
adopted the Pritikin diet (a low-fat diet based primarily upon cereal grains)
for periods of 1–2 years developed vertical ridges on their fingernails [70]. It
is unclear if these symptoms are caused by impaired biotin metabolism; how-
ever the available research on this poorly studied vitamin suggests that diets
based primarily upon cereal grains are responsible for causing biotin deficien-
cies in a variety of laboratory animals.
Table 4 displays the mineral content and the percent of the recommended
daily allowance (RDA) in a 100-gram sample of the world’s most commonly
29Cereal Grains: Humanity’s Double-Edged Sword
Fig. 1. Biotin metabolism. Biotin-dependent carboxylation reactions can be divided
into step 1 (the formation of carboxyl biotinyl enzyme), and step 2 (carboxyl transfer to an
appropriate acceptor substrate, dependent upon the specific transcarboxylase involved).
consumed cereal grains. Of the minerals, cereal grains are poor sources of
sodium and calcium but are relatively rich sources of phosphorous, potassium
and magnesium. Not all of the minerals are included in table 4; however it
can be seen that cereal grains contain moderate amounts (10–33%) of zinc,
copper and iron and high amounts of manganese.
Calcium. Except for calcium and sodium, it would appear that cereal
grains provide reasonable amounts of most minerals needed for adequate
nutrition. Since the western diet is already overburdened by high dietary
sodium levels [71], the low sodium content of cereal grains is desirable. In
most western populations that consume a mixed diet, the low calcium content
of cereal grains does not normally represent a problem since dairy products
and leafy green vegetables are good sources of calcium, if they are included
in the diet. However, as is the case for vitamins, as more and more cereal
grains are included in the diet, they tend to displace dairy and vegetable
sources of calcium. Further, cereal grains have a Ca/P ratio which is quite
low (mean from table 4>0.08) and which can negatively impact bone growth
and metabolism. Consumption of a large excess of dietary phosphorus, when
calcium intake is adequate or low, leads to secondary hyperparathyroidism
and progressive bone loss [72]. The recommended, ideal Ca/P ratio is 1:1,
Fig. 2. The essential fatty acids and their long-chain polyunsaturated metabolites.
whereas in the United States it averages 0.64 for women and 0.62 for men
[72]. In addition to the unfavorable Ca/P ratio, cereal grains maintain a quite
low Ca/Mg ratio (averaging 0.19 from table 4) which also favors net Ca
excretion, since imbalances in Mg intake relative to Ca decrease gastrointesti-
nal absorption and retention of Ca [73, 74]. Because of the high phytate
content of whole grain cereals much of the calcium present is unavailable
for absorption because the phytate forms insoluble complexes with calcium
[75]. The net eect of a low calcium content, a low Ca/P ratio, a low Ca/
Mg ratio, and low bioavailability of calcium via a high phytate content
frequently induces bone mineral pathologies in populations dependent upon
cereal grains as a staple food. In populations where cereal grains provide
the major source of calories, osteomalacia, rickets and osteoporosis are com-
monplace [76–79]. Cereal grains have been shown to cause their rachitogenic-
and osteomalacia-producing eects in spite of the presence of adequate sun-
shine [80]. Further, substitution of leavened white breads of lower extraction
for unleavened whole grain breads improved biochemical symptoms in pa-
tients with rickets or osteomalacia [77].
31Cereal Grains: Humanity’s Double-Edged Sword
Consumption of high levels of whole grain cereal products impairs bone
metabolism not only by limiting calcium intake, but by indirectly altering
vitamin D metabolism. In animal studies it has been long recognized that
excessive consumption of cereal grains can induce vitamin D deficiencies in
a wide variety of animals [81–83] including primates [84]. Epidemiological
studies of populations consuming high levels of unleavened whole grain breads
show vitamin D deficiency to be widespread [85–87]. A study of radiolabelled
25-hydroxyvitamin D
) in humans consuming 60 g of wheat bran
daily for 30 days clearly demonstrated an enhanced elimination of 25(OH)D
in the intestinal lumen [88]. The mechanism by which cereal grain consumption
influences vitamin D is unclear. Some investigators have suggested that cereal
grains may interfere with the enterohepatic circulation of vitamin D or its
metabolites [84, 88], whereas others have shown that calcium deficiency in-
creases the rate of inactivation of vitamin D in the liver [89]. This eect is
mediated by 1,25-dihydroxyvitamin D (1,25(OH)
D) produced in response to
secondary hyperparathyroidism, which promoteshepatic conversion of vitamin
D to polar inactivation products which are excreted in bile [89]. Consequently,
the low Ca/P ratio of cereal grains has the ability to elevate PTH which in
turn stimulates increased production of 1,25(OH)
D which causes an acceler-
ated loss of 25-hydroxyvitamin D.
Iron. In addition to their deleterious influence upon calcium metabolism,
cereal grains when consumed in excessive quantities can adversely influence
iron metabolism. Because of their fiber and phytate content, the bioavailability
of iron in cereal grains is quite low [75, 90]. Iron deficiency is the most prevalent
nutritional problem in the world today aecting 2.15 billion people throughout
the world and being severe enough to cause anemia in 1.2 billion people
[91, 92]. The causative factor has been clearly demonstrated to be the poor
bioavailability of iron from cereal-based diets, which are the staple food in
many developing countries [93]. The displacement of iron-rich animal foods
by cereal grains, legumes and plant-based diets is thus largely indirectly respon-
sible for the worldwide epidemic of iron deficiency. Iron deficiency is known
to reduce work capacity and productivity in adults, increase the severity and
incidence of infection, and increase maternal, prenatal and perinatal mortality
[94]. Perhaps the most serious eect of iron deficiency is the often irreversible
impairment of a child’s learning ability [94].
There appear to be a number of elements within cereal grains which may
inhibit nonheme iron absorption including phytate [75], tannins [95], fiber [75],
lectins [96], phosphate [97] and perhaps other unknown factors [98]. However,
the primary inhibitor of nonheme iron absorption by cereal grains is its phytate
content [98]. Recent work has indicated that phytate must be almost totally
removed to eliminate its inhibitory eect on nonheme iron absorption [99].
Consequently, diets based upon whole grain maize [100], rice [101], wheat
[102] and oats [103] have been consistently shown to reduce iron absorption.
Nonheme iron absorption can be enhanced by including ascorbate-rich fruit
and vegetables with cereal-based meals [101]. Further, the addition of yeast
fermentation to make leavened breads is known to reduce their phytate content
[102]. Additionally, fortification of cereal grains with iron has been shown to
be an eective procedure to prevent iron deficiency anemia [104, 105].
Other Minerals. In addition to calcium and iron, the bioavailability of
zinc, copper and magnesium in cereal grains is generally low [75], whereas the
absorption of manganese, chromium and selenium does not appear to be
impaired [90]. Except for zinc, the clinical implications of deficiencies in these
minerals relative to cereal grain consumption have been poorly studied. Con-
sequently, few links have been established between high cereal grain consump-
tion and deficiencies of copper, magnesium, manganese, chromium and
selenium in human diets. However, there is substantial evidence which demon-
strates that relatively high consumption of cereal grains can have a detrimental
influence upon zinc metabolism and thus adversely aect human health and
Zinc. Radiolabelled studies of zinc absorption in rats [106] and humans
[107] have clearly demonstrated that consumption of whole grain cereals
(wheat, rye, barley, oats and triticale) impairs zinc absorption. Similar to iron,
it appears that phytate plays a major role in the inhibition of zinc absorption
[106, 107]; however, other factors are likely involved [106]. In humans, zinc
deficiency results in a characteristic syndrome called hypogonadal dwarfism
in which there is arrested growth, hypogonadism and delayed onset of puberty
[108]. In rural Iran where unleavened, whole grain flat bread (tanok) contrib-
utes at least 50% of the daily calories [106], the incidence of hypogonadal
dwarfism was estimated to be nearly 3% in 19-year-old conscripts [109]. Since
the zinc intake of these populations exceeds the RDA by a substantial margin
[109], it has been shown that the high consumption of tanok is responsible
for inducing negative zinc balances [110]. Recent studies of nonhuman primates
moderately deprived of zinc [111] as well as zinc supplementation trials in
children [112] have confirmed Reinhold’s earlier work [109] showing how
marginal zinc nutriture, independent of other nutrients, may limit skeletal
growth. Yeast leavening of whole grain breads can reduce their phytate content
and improve the bioavailability of zinc [106]; however increased ascorbic acid
intake does not enhance the absorption of zinc [103]. Because the bioavailability
of zinc from meat is four times greater than that from cereals [113], it is clear
that the displacement of animal-based foods by cereal-grain- and plant-based
diets is not only responsible for impaired zinc metabolism in developing coun-
tries, but also in western populations adopting vegetarian diets [114, 115].
33Cereal Grains: Humanity’s Double-Edged Sword
Essential Fatty Acids
Cereal grains are quite low in fats (table 6) averaging 3.6% fat for their
total caloric content; even still a predominantly cereal- and plant-based diet
can contribute 5–10 g per person per day of linoleic acid (LA), the major X-
6 (n-6) polyunsatuarated fatty acid found in grains [5]. The linolenic acid
content of cereals is quite low, and they are devoid of the longer chain X-3
(n-3) derivatives of linolenic acid, including eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA). Consequently, cereal-based diets, particularly
if they are supplemented by vegetable oils, tend to have a high n-6/n-3 ratio
(table 6) and are deficient in EPA, DHA and long-chain derivatives of LA
including arachidonic acid (AA).
In man, the longer chain fatty acids can be synthesized from their shorter
chain precursors; however the process is inecient [117], and because linoleic
and linolenic acid must utilize the same desaturase and elongase enzymes,
there is competitive inhibition of one another, so that high dietary levels of
linoleic acid tends to inhibit the formation of EPA from linolenic acid if
preformed EPA is not obtained directly in the diet from fish or meat sources.
The importance of certain long-chain fatty acids [20:3n-6 (dihomogammalin-
olenic acid), 20:4n-6 (AA) and 20:5n-3 (EPA)] is that they serve as precursors
for the synthesis of eicosanoids (the prostaglandins, prostacyclins, thrombox-
anes, and leukotrienes), potent hormone-like substances which have a variety
of eects including regulation of platelet aggregation, thrombosis and in-
flammation [118]. Increased dietary consumption of n-3 fatty acids, particu-
larly EPA has been shown to decrease triglycerides, decrease thrombotic
tendencies [119] and reduce symptoms of many inflammatory and auto-
immune diseases including arthritis [120] and inflammatory bowel disease
[121]. Additionally, epidemiological studies indicate a reduced mortality from
coronary heart disease in populations consuming increased amounts of n-3
fatty acids [122].
Vegetarian diets based primarily upon cereals, legumes and plant products
are known to have a high n-6/n-3 ratio because of their low levels of both
linolenic acid and the absence of its long-chain derivatives, EPA and DHA
[123]. Studies of preterm infants deprived of DHA have shown both visual
and cortical abnormalities [124]. A recent study of South Asian vegetarian
mothers has indicated lower plasma levels of EPA and DHA when compared
to white nonvegetarians [125]. Additionally, cord DHA levels were lower in
the vegetarian mothers, and the duration of gestation was 5.6 days shorter
than the meat-eating controls. In the vegetarian women early onset of labor
and emergency cesarean section were more common, and birth weight, head
circumference and body length were lower in the infants born to the vegetarian
women [125].
In the United States, the US Department of Agriculture has recently
adopted a ‘food pyramid’ of nutritional recommendations that places grains
and pasta at the bottom (i.e. to be eaten in the largest amounts; 6–11 servings
per day). It has recently been argued that a diet of this nature likely encourages
essential fatty acid (EFA) deficiencies and may lead to an increased incidence
of atherosclerosis [126]. The recommendation for a low-fat/high-carbohydrate
diet, which is high in trans fatty acids due to margarine intake, leads to
decreases in EFA. Since the standard American diet falls considerably short
of the 6–11 servings of cereal grains recommended by the USDA [127], it is
unlikely that cereal grain consumption, by itself, adversely influences the EFA
status of the average American omnivorous diet. However, there are world
populations in which excessive cereal grain consumption clearly has a deleteri-
ous impact upon essential fatty acid status. Studies of vegetarian and nonvege-
tarian populations from the Indian subcontinent who derive the bulk of their
caloric intake from cereals and pulses have consistently demonstrated high
plasma n-6/n-3 ratios, low levels of 20:5n-3 and 22:6n-3 and high levels of
18:2n6 when compared to western populations [125, 128–130]. Associated with
these altered fatty acid levels is a mortality rate from CHD which is equal to
[36, 37] or higher than [36, 129, 130] that found in western populations.
Although the precise etiology of high levels of CHD in Indian populations is
unclear, reduced plasma levels of n-3 fatty acids likely increase the risk for
CHD by a variety of mechanisms which influence blood lipids, blood pressure,
blood thrombic tendencies, and cardiac arrhythmias [119]. Since the western
diet is already overburdened by an excessively high (n-6/n-3) ratio from vegeta-
ble oils, margarine and shortening [131], nutritional recommendations encour-
aging increased cereal grain consumption at the expense of fruits, vegetables,
seafood and lean meats may indirectly contribute to an EFA profile which
promotes CHD.
There is substantial evidence to show that low-density lipoprotein (LDL)
oxidation plays an integral role in atherogenesis [132], and that diets enriched in
linoleic acid increase the linoleic acid content of LDL and therefore increase
its susceptibility to oxidation [133]. Blankenhorn et al. [134] have found that
increased intake of linoleic acid significantly increased the risk of developing
new atherosclerotic lesions in human coronary arteries. Further, the linoleic acid
content of adipose tissue has been positively associated with the degree of CHD
in patients undergoing coronary angiography [135]. Because cereal-grain- and
pulse-based diets are quite high in linoleic acid (table 6), populations consuming
these diets have been shown to have elevated plasma levels of linoleic acid when
compared to western populations [125, 129]. It is possible that the high mortality
rates of these populations [36, 129, 130] may be partially attributable to a high
linoleic acid intake which increases the oxidative susceptibility of LDL.
35Cereal Grains: Humanity’s Double-Edged Sword
These facts underscore the importance of a proper dietary balance of not
only the short-chain n-3 and n-6 fatty acids, but of the preformed long-chain
fatty acids of both the n-3 and n-6 families which are only found in foods of
animal and marine origin. A diet based primarily upon cereal grains, legumes
and plant foods inevitably leads to a disruption of this delicate balance among
the dietary fatty acids, and ultimately may alter optimal health via subtle
changes in eicosanoid, prostaglandin, prostacyclin, thromboxane and leukotri-
ene function in various tissues. Human dietary lipid requirements were shaped
eons ago, long before the agricultural revolution, and long before humanity’s
adoption of cereal grains as staple foods. Hence, the lipid composition of diets
based upon cereal grains, legumes, vegetable oils and other plant products is
vastly at odds with that found in wild game meat and organs [6], the primary,
evolutionary source of lipids to which the human genetic constitution is opti-
mally adapted [5].
Amino Acids
Because human body proteins constantly undergo breakdown and resyn-
thesis during growth, development and aging, there is a dietary need for
protein. Human body proteins are composed of 21 separate amino acids which
are divided into three categories: (1) essential; (2) conditionally essential, and
(3) nonessential. The nine essential amino acids cannot be synthesized in the
body and consequently must be supplied by diet. The conditionally essential
amino acids can be endogenously synthesized, however under certain physio-
logical and pathological conditions, endogenous synthesis is inadequate and
needs must be met by the diet. The nonessential amino acids can be endoge-
nously synthesized under all conditions if there is an adequate dietary source
of usable nitrogen. Consequently, in order for normal human protein metabo-
lism to take place, there must be an adequate dietary intake (qualitative) of
all 9 essential amino acids as well as an adequate intake (quantitative) of
protein for synthesis of the conditionally essential and nonessential amino
acids. The long-term metabolic consequences of imbalanced or marginally
insucient dietary amino acid intake in humans are not well documented;
however there is evidence which suggests these types of diets can result in
impaired linear growth [136], losses of body mass, muscular strength and
impaired immune function [137] as well as impaired recovery from illness [138]
and surgery [139].
Table 7 contrasts the amino acid contents of animal food sources to that
in cereal grains and legumes. Inspection of both tables 5 and 7 show that the
essential amino acid, lysine, is consistently lower in cereal proteins compared
to animal proteins. Also, the essential amino acid, threonine, tends to be lower
in cereal-based proteins relative to animal protein sources. The relative protein
Table 5. Amino acid and nutrient composition of eight unprocessed cereal grains (100-
gram samples)
Wheat Maize Rice Barley Sorghum Oats Rye Millet
Essential amino acids
Tryptophan, mg 160 67 101 208 124 234 154 119
(64%) (27%) (40%) (83%) (50%) (94%) (62%) (48%)
Threonine, mg 366 354 291 424 345 575 532 354
(81%) (79%) (65%) (94%) (77%) (128%) (118%) (79%)
Isoleucine, mg 458 337 336 456 433 694 550 465
(71%) (52%) (52%) (70%) (67%) (107%) (85%) (72%)
Leucine, mg 854 1,155 657 848 1,491 1,284 980 1,400
(90%) (122%) (69%) (89%) (157%) (135%) (103%) (147%)
Lysine, mg 335 265 303 465 229 701 605 212
(42%) (33%) (38%) (58%) (29%) (88%) (76%) (26%)
Methionine, mg 201 198 179 240 169 312 248 221
(47%) (46%) (42%) (56%) (40%) (73%) (58%) (52%)
Cystine*, mg 322 170 96 276 127 408 329 212
(76%) (40%) (23%) (65%) (30%) (96%) (77%) (50%)
Phenylaline, mg 593 463 410 700 546 894 673 580
(125%) (97%) (86%) (147%) (115%) (188%) (142%) (122%)
Tyrosine*, mg 387 383 298 358 321 573 339 340
(81%) (81%) (63%) (75%) (68%) (121%) (71%) (72%)
Valine, mg 556 477 466 612 561 937 747 578
(85%) (73%) (72%) (94%) (86%) (144%) (115%) (89%)
Histidine, mg 285 287 202 281 246 405 367 236
(52%) (52%) (37%) (51%) (45%) (74%) (67%) (43%)
Nutrient composition
Kilocalories 327 365 370 354 339 389 335 378
Protein, % total calories 12.6 9.4 7.9 12.5 11.3 16.9 14.7 11.0
Carbohydrate, % total 71.3 74.1 77.2 73.3 74.4 66.0 69.8 73.0
Fat, % total calories 1.5 4.7 2.9 2.3 3.3 6.9 2.5 4.2
Values in (parentheses) represent RDA %. No detectable amounts of taurine in any grain.
* Conditionally essential amino acids.
content of cereal grains averages 12.0% (table 5) whereas that in lean beef is
22%. Consequently, a higher total intake of cereal products would be required
to meet the needs for both total protein and certain individual essential amino
acids when compared to animal foods.
Table 8 clearly indicates that cereal grains provide the majority of protein
calories for most countries of the world. Because cereal-based diets frequently
37Cereal Grains: Humanity’s Double-Edged Sword
Table 6 . Fatty acid content of cereal grains (g fatty acid/100-gram sample): adapted
from Weihrauch et al. [116]
Fatty acid Wheat Maize Rice Barley Sorghum Oats Rye Millet
Saturated fats
14:0 0.00 0.03 0.01 0.01 0.02 – 0.00
(myristic acid)
16:0 0.36 0.40 0.54 0.45 0.44 1.21 0.25 0.68
(palmitic acid)
18:0 0.01 0.06 0.04 0.02 0.03 0.10 0.02 0.16
(stearic acid)
20:0 0.01 0.01 0.00 0.00 0.04 0.00 0.02
Monounsaturated fats
16:1 0.01 0.01 0.01 0.01 0.04 0.02 0.01 0.02
18:1 0.25 0.91 0.54 0.24 1.15 2.60 0.22 0.83
(oleic acid)
Polyunsaturated fats
18:2n-6 1.20 2.12 0.78 1.14 1.46 2.87 0.95 1.69
(linoleic acid)
18:3n-3 0.10 0.03 0.03 0.13 0.09 0.16 0.12 0.13
(linolenic acid)
Ratio (n-6/n-3) 12.0 70.7 26.0 8.7 16.2 17.9 7.9 13.0
Fat, % total calories 2.7 4.1 2.3 2.8 3.3 7.4 2.2 4.1
>=0.005 g.
include legumes and small amounts of animal protein, they are almost always
adequate in the qualitative aspect of amino acid nutriture [140]; however the
possibility exists that lysine intake may be marginal [140], particularly in
children receiving a single or limited number of food protein choices [141].
Although cereal- and legume-based diets are usually adequate in the
qualitative aspects of amino acid nutriture, there is evidence that under some
circumstances they may fall short in quantitative aspects. The current estimated
mean dietary protein requirements for healthy adult men and women of all
ages is 0.6 g/kg/day, with a suggested safe protein intake set at 0.75 g/kg/day
by the Joint FAO/WHO/UNU Expert Consultation [142] and at 0.8 g/kg/day
by the Food and Nutrition Board of the US National Research Council [143].
There is now considerable evidence to suggest that these recommendations
are too low for both adults [144, 145] and the elderly [146] and that safe
Table 7 . Amino acid distribution in cereal, legume and animal food sources: adapted
from Young et al. [140]
Food Lysine content Sulfur amino acids Threonine Tryptophan
mg/g protein mg/g protein mg/g protein mg/g protein
Cereal grains 31×10 37×532×412×2
Legumes 64×10 25×338×312×4
Animal foods 85×938 44 12
Table 8 . Nutritional contributions of cereal grains to various regions of the world:
adapted from Young et al. [141]
Region Caloric intake Caloric intake Protein intake Protein intake
g from cereals g from cereals
North America 3,557 17 105.7 18
Western Europe 3,376 26 94.8 29
Eastern Europe and USSR 3,481 38 103.3 37
Latin America 2,557 39 65.5 38
Africa 2,205 47 55.0 51
Near East 2,620 61 73.5 62
Far East 2,029 67 48.7 63
All developed countries 3,395 31 99.1 30
All developing countries 2,260 61 57.3 55
World 2,571 50 68.8 45
dietary protein intakes may be as high as 1.0–1.25 g/kg/day [145, 146]. The
elderly are particularly vulnerable to inadequate protein intakes. A nutritional
survey of 946 free-living men and women in the United States over the age
of 60 years showed that approximately half of them consumed less than
1.0–1.25 g/kg/day of protein [147]. Because the total protein content of cereal
grains is considerably less than that in animal-based foods (table 7), the dis-
placement of animal foods by excessive consumption of cereal grains has the
potential to compromise adequate protein intake. Indeed, only 2 of 8 elderly
Brazilian men consuming their typical rice and bean diet (containing 0.63 g/
kg/day protein) were able to achieve positive nitrogen balance [148]. Because
cereal-grain-based diets provide at least 50% of the protein calories for the
world population, it is quite likely that inadequate protein intake in the elderly
may be quite common [137, 146, 148].
Although taurine is considered a conditionally essential amino acid, there
is increasing recognition that humans have limited ability to synthesize taurine
39Cereal Grains: Humanity’s Double-Edged Sword
Table 9 . Diseases which may occur
simultaneously with celiac disease Addison’s disease
Aphthous ulceration
Atopic diseases
Autoimmune thyroid diseases
Dental enamel defects
Dermatitis herpetiformis
Epilepsy with cerebral calcifications
Insulin-dependent diabetes mellitus
IgA nephropathy
Liver disease
Chronic active hepatitis
Primary sclerosing cholangitis
Primary biliary cirrhosis
Rheumatoid arthritis
Selective IgA deficiency
Sjogren’s syndrome
Systemic lupus erythematosus
from cysteine [149, 150], consequently dietary taurine plays an important role
in maintaining body taurine pools [151, 152]. All plant foods have undetectable
amounts of taurine [153] including cereal grains (table 5). Studies of vegans
have shown them to maintain lower levels of both plasma and urinary taurine
[154, 155]. The clinical sequelae of long-term taurine deficiency in individuals
consuming cereal- and plant-based diets has not been studied. However, tau-
rine is known to positively influence cardiovascular disease by reducing platelet
aggregation [156], by reducing reperfusion injury via free radical scavenging
action [157], and by exhibiting antiarrhythmic activity [158]. Furthermore,
taurine appears to have an essential role in the posttrauma state [159, 160]
and in maintaining normal retinal function [161].
Consistent with populations from the fossil record showing a characteristic
reduction in stature with the adoption of cereal-based agriculture [4, 17–19],
is the observation that present-day populations depending upon cereal grains
for the bulk of their energy and protein also tend to be of short stature
[162–165]. Further, vegan and vegetarian children often fail to grow as well
as their omnivorous cohorts despite apparently adequate intakes of amino
acids and nitrogen [166]. There are a variety of reasons why cereal-based diets
may impair linear growth. These include deficiencies in energy, protein, zinc,
iron, copper, calcium, vitamin D, vitamin B
and vitamin A [136, 166]. How-
ever, for none of these nutrients is there clear, consistent evidence that
supplementation with the nutrient benefits linear growth [136]. It is likely that
Fig.3. Pathogenesis of childhood urinary bladder stones. Adapted from Teotia et al. [174].
growth and hence adult stature is limited by multiple, simultaneous deficiencies
[136] in populations dependent upon cereal grains for the bulk of their caloric
intake. Excessive consumption of cereal grains clearly has a deleterious eect
upon virtually all of the previously listed nutrients.
Childhood urinary bladder stones have virtually disappeared from western
countries, however they are still very common in developing countries such as
Pakistan, India, Thailand, Sumatra, Taiwan and Iran [167–170]. These stones
are composed primarily of ammonium acid urate, and studies of children in
these areas have demonstrated increased urinary excretion of oxalate ammonia
and uric acid and decreased urinary phosphate and pH; factors which strongly
favor ammonium urate calculi [168, 171]. It has been shown that an increase in
urinary ammonia occurs in babies whose feeds consisted predominantly of rice
[168]. Furthermore, urinary bladder stones have been reported to be common
in Australian aboriginal children in which breast feeding is supplemented with
white flour and little else [172]. Bladder stone disease in children was endemic
in 19th-century England, and it has been suggested that the exclusive substitu-
tion of breast milk with porridge and bread was a significant factor in the patho-
genesis of this disease [173]. Endemic childhood bladder disease clearly occurs
in countries and populations in which cereal grains comprise most of the caloric
41Cereal Grains: Humanity’s Double-Edged Sword
intake, and cereal grains have been implicated in the etiology of the disease [168,
172]. However, it is likely that other factors, including calorie and protein malnu-
trition, infection and starvation operate synergistically with high intake of cereal
grains to elicit the disease [174] (fig. 3).
Antinutrients in Cereal Grains
In the evolution of plant life history strategies, plant species encounter a
basic dilemma in the amount of adaptational energy they must allocate to
growth versus that which they must allocate to defenses necessary for survival
in the presence of pathogens and herbivores [175]. Therefore, plants face an
evolutionary tradeo; they must grow fast enough to compete, yet they must
also divert enough energy for the synthesis of secondary metabolites required
to ward opathogens and herbivores. Defense is not the only role of secondary
metabolites, and other functions include attraction of pollinators, protection
from ultraviolet light, structural support, temporary nutrient storage, phyto-
hormone regulation, facilitation of nutrient uptake and protection of roots
from acidic and reducing environments [175]. Quite frequently, plants provision
seeds with high concentrations of secondary metabolites to ensure the survival
of the seed and the rapidly growing seedling before it can synthesize its own
secondary compounds.
Cereal grains which are the seeds of grasses (gramineae) contain a variety
of secondary metabolites which can be either toxic, antinutritional, benign or
somewhere in between, dependent upon the physiology of the consumer an-
imal. The presence of secondary metabolites in plants do not guarantee free-
dom from predation by herbivores, and many herbivores have evolved a number
of strategies for circumventing the resistance mechanisms of their hosts [175].
Many birds, rodents, insects and ruminants can clearly consume cereal grains
in high quantities with minimal undue eects. Because primates evolved in
the tropical forest, all of their potential plant food was derived from dicotyle-
donous species; therefore, the primate gut was initially adapted to both the
nutritive and defensive components of dicotyledons rather than the nutritive
and defense components of monocotyledonous cereal grains [176]. Under
certain conditions a few species of primates (Papio species, Theropithecus
gelada) have been observed to consume grass and grass seeds; however, by
and large, consumption of monocotyledonous plant foods, particularly cereal
grains, is a notable departure from the traditional plant foods consumed by
the majority of primates [176]. Consequently, humans, like all other primates
have had little evolutionary experience in developing resistance to secondary
and antinutritional compounds which normally occur in cereal grains.
Alkylresorcinols are phenolic compounds which are found in the highest
amounts in rye (97 mg/100 g), in high amounts in wheat (67 mg/100 g) and
in lower amounts in other cereals such as oats, barley, millet and corn [177].
These compounds are concentrated in the outer bran layers of cereal grains
and are thought to provide resistance from pathogenic organisms during dor-
mancy and germination [178]. Alkylresorcinols previously were associated only
with rye and were thought to be a problem only in animal nutrition. Feeding
of rye in large amounts to cattle, sheep, horses, pigs and poultry has been
shown to cause slower growth than feeding of other cereal grains [177]. Sub-
sequent studies indicated the growth depressive eects of alkylresorcinols could
be attributed to both an appetite depressive eect (70%) and a direct toxic
eect (30%) [179].
Although there is scant information upon the eects of alkylresorcinols
in human nutrition, in animal models they have been shown to cause red-cell
blood hemolysis, permeability changes of erythrocytes and liposomes, DNA
strand scission, and have been shown to be involved in many pathological
conditions including hepatocyte and renal degeneration [177]. An in vitro
experiment in humans has shown that alkylresorcinols were able to stimulate
platelet thromboxane (TXA
) production by 30–65% using 0.02–2.0 mmol/l
concentrations. To date no human experiments have been conducted to deter-
mine if these proinflammatory eects can occur in vivo from alkylresorcinols
ingested from whole grain wheat products. It should be pointed out that cereal
grain alkylresorcinols may have antimutagenic activity [181], and in lower
concentrations may have antioxidant properties [182].
Alpha-Amylase Inhibitors
The aqueous/saline protein extract of wheat seed is called the albumin
fraction. Within the albumin fraction are a very large number of protein
components capable of inhibiting alpha-amylases from insect, mammalian,
avian and marine species. Alpha-amylase inhibitors make up as much as 80%
of the total albumin fraction and may represent 1% of wheat flour [183].
Because of their thermostability, alpha-amylase inhibitors persist through
bread baking and are found in large amounts in bread, breakfast cereals, pasta
and other wheat products [183]. Alpha-amylase inhibitors are ubiquitous in
the cereal family (gramineae) and in addition to their presence in wheat, they
have been found in rye, barley, oats, rice and sorghum. As with alkylresorcinols,
alpha-amylase inhibitors are thought to have evolved in cereal grains as a
defense mechanism against herbivore predation, primarily against insects [184].
The multiple alpha-amylase inhibitors found in cereal grains have distinc-
tive structural properties and show considerable variability in their inhibitory
43Cereal Grains: Humanity’s Double-Edged Sword
eect upon human salivary and pancreatic alpha-amylase [185, 186]. Because
salivary and pancreatic amylases catalyze the hydrolysis of glycosidic linkages
in starch and other related polysaccharides, their inhibition by cereal grain
alpha-amylase inhibitors have been theorized to have beneficial therapeutic
eects by reducing carbohydrate-induced hyperglycemia and hyperinsulinemia
[187]. Early studies of commercially available alpha-amylase inhibitor prepara-
tions failed to decrease starch digestion in humans [188, 189] perhaps because
of insucient antiamylase activity [190]. More recent research utilizing purified
amylase inhibitors have demonstrated that these antinutrients can rapidly
inactivate amylase in human intestinal lumen [186, 190] in a dose-dependent
manner [186] and reduce postprandial rises in glucose and insulin [191].
Although the acute eects of alpha-amylase inhibitors may appear to
have therapeutic benefit in patients suering from diabetes mellitus, obesity
and other diseases of insulin resistance, chronic administration in animal
models has been shown to induce adverse eects including deleterious histo-
logical changes to the pancreas and pancreatic hypertrophy [192]. Because it
is unclear if these dietary antinutrients can elicit similar deleterious changes
in the pancreatic structure and function of humans [193], the presence of
alpha-amylase inhibitors in human foodstus is generally considered to be
undesirable [183].
In addition to their influence upon starch digestion, alpha-amylase inhib-
itors are known to be prominent allergens. The inhalation of cereal flours is
the cause of baker’s asthma, an occupational allergy with a high prevalence
in the baking industry [194]. Baker’s asthma is mediated by IgE antibodies,
and until recently the identification of the IgE binding proteins (allergens) in
the putative cereal flours was unknown. Over the past decade, it has been
conclusively demonstrated that a variety of alpha-amylase inhibitor proteins
are responsible for bakers’ allergenic reaction to cereal flours [194, 195]. Fur-
ther, alpha-amylase inhibitors recently have been demonstrated to be a relevant
allergen in children experiencing hypersensitivity reactions following wheat
ingestion [196].
Protease Inhibitors
Protease inhibitors are proteins which have the ability to inhibit the proteo-
lytic activity of certain enzymes and are common throughout the plant king-
dom, particularly among the legumes. As with alpha-amylase inhibitors, there
are a muiltiplicity of plant proteins which have protease inhibitor activity.
The two best-studied protease inhibitors, derived from plants, are the Kunitz
inhibitor, which has a specificity directed mainly towards trypsin in human
gastric juice, and the Bowman-Birk inhibitor which is capable of inhibiting
chymotrypsin as well as trypsin. The Bowman-Birk inhibitor is relatively stable
to both heat and digestion and can therefore survive intact through cooking
and transit through the stomach [197].
Normally, there is a negative feedback loop whereby the secretory activity
of the pancreas is controlled by the level of trypsin in the intestinal tract.
Intraluminal trypsin inhibits pancreatic secretion by inhibiting the release of
the hormone cholecystokinin from the intestinal mucosa; however when die-
tary protease inhibitors bind trypsin, there is an uncontrolled release of chole-
cystokinin. This continuous and excessive release of cholecystokinin has been
shown in animal models to result in pancreatic hypertrophy and hyperplasia
[198] and may eventually lead to cancer [199]. The deleterious influence of
the Bowman-Birk inhibitor upon this negative feedback loop has been demon-
strated in humans [200].
As with other secondary metabolites, the primary function of protease
inhibitors in plants is thought to prevent predation from invading insects and
microbes [201]. Protease inhibitors have been found in virtually all of the
cereal grains [201]; however, they apparently have low trypsin inhibitory activ-
ity. Wheat has been shown to have only 1.5% the trypsin inhibitory activity
of soy beans [202]. Nonetheless, feedings of raw rice bran [201] and raw rye
and barley [203] have resulted in pancreatic hypertrophy in broiler chicks
which was attributable to protease inhibitors. In humans, the dietary eects
of chronic low level exposure to plant protease inhibitors are unknown, and
there is some evidence that they may have beneficial, antineoplastic eects
Lectins are proteins that are widespread in the plant kingdom with the
unique property of binding to carbohydrate-containing molecules, particularly
toward the sugar component. They were originally identified by their ability
to agglutinate (clump) erythrocytes which occurs because of the interaction
of multiple binding sites on the lectin molecule with specific glycoconjugate
receptors on the surface of the erythrocyte cell membranes. Because of this
binding property, lectins can interact with a variety of other cells in the body
and are recognized as the major antinutrient of food [205].
Of the eight commonly consumed cereal grains, lectin activity has been
demonstrated in wheat, rye, barley, oats, corn [206], and rice [207] but not in
sorghum or millet [208]. The biological activity of lectins found in cereal grains
are similar because they are closely related to one another both structurally
and immunologically [209]. The best studied of the cereal grain lectins is wheat
germ agglutinin (WGA), and the in vitro biological eects of WGA upon
tissues and organs are astonishingly widespread. Virtually every cell in the
body, and every extracellular substance can be bound by WGA because of
45Cereal Grains: Humanity’s Double-Edged Sword
the ubiquity of secreted glycoconjugates [210]. In his comprehensive review,
Freed [210] has shown that WGA can bind (in vitro) the following tissues and
organs: alimentary tract (mouth, stomach, intestines), pancreas, musculoskele-
tal system, kidney, skin, nervous and myelin tissues, reproductive organs, and
platelets and plasma proteins.
WGA is heat stable and resistant to digestive proteolytic breakdown in
both rats [211] and humans [212] and has been recovered intact and biologically
active in human feces [212]. WGA and lectins in general bind surface glycans
on gut brush border epithelial cells, and the damage they cause to these cells
interferes with digestive/absorptive activities, stimulates shifts in bacterial flora
and modulates the immune state of the gut [213]. In rats, WGA has been
shown to cause hyperplastic and hypertrophic growth of the small intestine
and interfere with normal gut metabolism and function, while simultaneously
inducing pancreatic enlargement and thymic atrophy [211]. The dietary levels
of WGA (7 g/kg body weight) necessary to induce these untoward eects in
rats is significantly higher than dietary levels of WGA which would be normally
encountered in foods derived from wheat, since the concentration of WGA is
about 2 g/kg in unprocessed wheat germ [212]. No long-term studies of low
level WGA ingestion upon gut structure and function have been conducted
in humans; however there is suggestive evidence that high wheat gluten diets
induce jejunal mucosal architectural changes in normal subjects without celiac
disease [214].
Most food proteins entering the small intestine are fully degraded into
their amino acid components and therefore do not pass intact into systemic
circulation. However, it is increasingly being recognized that small quantities
of dietary protein which escape digestive proteolytic breakdown can be syste-
mically absorbed and presented by macrophages to competent lymphocytes
of the immune system [215, 216]. Under normal circumstances, when the
luminal concentrations of intact dietary proteins is low, absorbed proteins
generally elicit a minimal allergic response because of the limiting influence
of T-suppressor cells. Because of their resistance to digestive, proteolytic break-
down, the luminal concentrations of lectins can be quite high, consequently
their transport through the gut wall can exceed that of other dietary antigens
by several orders of magnitude [216]. Additionally, WGA and other lectins,
may facilitate the passage of undegraded dietary antigens into the systemic
circulation by their ability to increase the permeability of the intestine [217].
Consequently, dietary lectins represent powerful oral immunogens capable of
eliciting specific and high antibody responses [213]. In rats, dietary WGA is
rapidly transported across the intestinal wall into systemic circulation where
it is deposited in blood and lymphatic vessel walls [211]. Although no direct
human experiments have been conducted evaluating dietary WGA passage
into systemic circulation, there is substantial evidence to indicate that this
event occurs since serum antibodies to WGA are routinely found in normals
[218, 219] and in celiac patients [219].
Once WGA crosses into systemic circulation, it has the potential to inter-
fere with the body’s normal hormonal balance, metabolism and health [210,
213]. Numerous in vitro studies have shown WGA to have insulomimetic
eects [220, 221]. Although few animal and no human studies have been
designed to evaluate the in vivo influence of dietary WGA upon insulin metabo-
lism, experiments utilizing dietary kidney bean lectin (PHA) in rats have
demonstrated a depression in circulating insulin levels which modulates com-
plex change in the body’s hormonal balance [213]. Numerous in vitro studies
suggest that WGA may have the potential to subtly impact health via its ability
to inhibit the mitogenic actions of multiple peptide growth factors including
insulin-like growth factor (IGF) [222], platelet-derived growth factor [222],
epidermal growth factor [222, 223] and nerve growth factor [224]. Children
with celiac disease exhibit short stature and stunted growth patterns [225],
depressed levels of IGF-I [226–228], depressed levels of IGF-binding protein
3 (IGFBP-3) [226, 227] and lower levels of growth hormone binding protein
II (GH-BP II) [226]. Administration of wheat (gluten)-free diets in celiac
children increases circulating levels of IGF-I [226, 227], IGFBP-3 [226, 228]
and GH-BP II [226] while simultaneously improving height and weight [226].
Presently, there is insucient data in humans to determine the health ramifica-
tions of chronic low level consumption of WGA, but because detectable
amounts of functionally and immunochemically intact WGA are transported
across the intestinal wall [211], the potential for this lectin to disrupt human
health is high.
Autoimmune Diseases and Cereal Grain Consumption
Autoimmune diseases occur when the body loses the ability to discriminate
self proteins from nonself proteins. This loss of tolerance ultimately results in
destruction of self tissues by the immune system. Autoimmune diseases occur
in a variety of tissues and include such well-known maladies as rheumatoid
arthritis, multiple sclerosis, and insulin-dependent diabetes mellitus (IDDM).
Typically, autoimmune diseases are characterized by the presence of autoanti-
bodies against specific self proteins [229]. Most autoimmune diseases are
thought to develop via an interaction of an environmental factor or factors
in conjunction with a specific hereditary component.
Dietary cereal grains are the known environmental causative agent for at
least two autoimmune diseases: celiac disease [230] and dermatitis herpeti-
47Cereal Grains: Humanity’s Double-Edged Sword
formis [231]. Withdrawal of gluten-containing cereals from the diet ameliorates
all symptoms of both diseases. Further, evidence from clinical, epidemiological
and animal studies implicate cereal grains in the etiology of other autoimmune
diseases. The mechanism or mechanisms by which cereal grains may induce
autoimmunity in genetically susceptible individuals is not clearly defined;
however it is increasingly being recognized that the process of molecular
mimicry, by which a specific foreign antigen may cross react with self antigens,
may be involved in a variety of autoimmune diseases [232, 233]. Additionally,
cereal grain lectins and proteins may also have involvement in the development
of autoimmunity via their modulation of immune system components [234,
The development of autoimmunity is a poorly understood process; how-
ever it is generally agreed that it occurs as a result of an interaction between
environmental and genetic components [229]. The genetic component most
closely associated with the expression of autoimmune diseases are those genes
which code for the human leukocyte antigens (HLA). The HLA is subdivided
into class I (HLA-A, HLA-B, HLA-C), class II (HLA-DR, HLA-DQ and
HLA-DP) and class III categories. Both class I and class II proteins are
transmembrane cell surface glycoproteins which are required for the recogni-
tion of both self and foreign antigens by T lymphocytes. Class I proteins are
found on all nucleated cells and platelets, whereas class II HLAs are found
on macrophages, monocytes, epithelial dendritic cells, B lymphocytes and
activated T lymphocytes. Class I HLA proteins present peptide fragments
from degraded intracellular viruses to circulating CD8+cytotoxic lympho-
cytes which recognize and attack virus-infected cells. Class II HLA proteins
present foreign antigens to CD4+T lymphocytes which results in the induction
of T-cell proliferation, lymphokine production, and subsequent synthesis of
immunoglobulin by B lymphocytes. Except for human spondyloarthropathies,
the preponderance of known or suspected autoimmune diseases are associated
with class II haplotypes [229].
Many tissues (thyroid, adrenal, pancreatic islet beta cells, bile ducts, kidney,
etc.) that are typically attacked by autoimmune diseases do not normally express
class II HLA antigens, consequently, it is paradoxical that autoimmunity should
developinthesetissues.Theinductionofinappropriateclass IIantigens innucle-
ated cells may be an important preliminary event in the etiology of autoimmune
disease [236] and can occur from the stimulatory eect of interferon-c(IFN-c)
wrought by viral infections [210]. Additionally, lectins are potent inducers of
HLA class II molecules [237], probably via their ability to stimulate release of
IFN-c[238, 239]. Further, the gliadin fraction of wheat, which exhibits lectin
activity [240], has been shown to amplify HLA class II expression in intestinal
epithelial cell lines [235]. Ingested WGA from dietary wheat products, crossing
the intestinal barrier would also influence the development ofautoimmunity by
its ability to stimulate T-lymphocyte proliferation [234, 241].
Molecular Mimicry
In autoimmune disease, the inability of the immune system to distinguish
self antigens from foreign antigens ultimately results in the destruction of self
tissues. Thereis now a substantial body ofevidence indicating that the breaking
of tolerance to self antigens can occur when invading foreign proteins contain
amino acid homologies similar to a protein in thehost [233, 242]. This similarity
in structure shared by products of dissimilar genes (dubbed molecular mimicry)
causes cross-reactive immune responses which are directed not only at the
invading foreign protein but also at any cells displaying amino acid sequences
similar to those of the foreign protein. The main body of evidence implicates
viral and bacterial pathogens as initiators of cross reactivity and autoimmunity
[233, 242]; however there is an emerging body of literature supporting the
view that dietary antigens [243, 244], including cereal grains [245, 246], may
also induce cross-reactivity and hence autoimmunity by virtue of peptide
structures homologous to those in the host.
Genetic and Anthropological Factors
Virtually all autoimmune diseases have a strong genetic component cate-
gorized by a variety of HLA haplotypes [229]. For instance, there is a 73%
greater risk of developing celiac disease in people displaying the HLA-DQ2
antigen relative to those who do not [229]. It is not entirely clear why HLA
genes alter the relative risk for autoimmune disease; however it is likely that
they influence the binding anity of the HLA peptide complex with circulating
T lymphocytes. Because the protein subunits comprising the HLA antigen
binding groove are coded by highly polymorphic HLA genes [229], various
HLA alleles can subtly alter the structure of the HLA antigenic binding groove
[247] and therefore influence whether a mimicking epitope has a proliferative
or anergizing response upon engagement of the HLA peptide complex with
the T-cell receptor. From an evolutionary perspective, the inheritance of specific
HLA haplotypes appears to be primarily related to infectious disease suscepti-
bility, and inheritance of certain HLA haplotypes may have conferred relative
protection from invading pathogens [248, 249].
In celiac disease, there is a general geographical northwest (NW) to south-
east (SE) disease incidence gradient from the Near East to Northern Europe
[249]. Associated with this gradient is a concurrent NW/SE gradient for the
HLA-B8 antigen which parallels the spread of agriculture and hence cereal
49Cereal Grains: Humanity’s Double-Edged Sword
Fig. 4. HLA-B8 frequencies and the spread of agriculture in Europe. Adapted from
Simoons [249].
grain consumption (wheat and barley) from the Near East 10,000 years ago
(fig. 4). HLA-B8 is not a direct marker for celiac disease, but because it is in
linkage disequilibrium with HLA-DQ2, it is directly implicated with the dis-
ease. Consequently, high frequencies of HLA-B8 (which are positively associ-
ated with celiac disease via their close linkage with HLA-DQ2) occur in
European populations with the least evolutionary exposure to cereal grains,
and conversely, those populations with the most evolutionary exposure to
cereal grains maintain lower frequencies of HLA-B8 [249, 250]. It has been
suggested that this gradient occurs because high frequencies of HLA-B8 and
hence HLA-DQ2 were once typical of Near Eastern peoples; however these
antigens became a liability with the advent of regular cereal grain consumption
ushered in by the agricultural revolution [249, 250]. Because cereal grain
consumption presumably would have increased mortality (via increased suscep-
tibility to celiac disease) in populations with HLA-DQ2, natural selection
would have reduced the frequency of this antigen in populations with the most
evolutionary exposure to wheat and barley [249, 250].
Because of the strong linkage disequilibrium for the genes which code for
the (B8, DR3, DQ2) haplotype, autoimmune disorders linked with DR3,
including IDDM, have been found more often in celiac disease patients [251].
The incidence of IDDM is approximately 7–10 times higher in celiacs than
in the normal population [252, 253], and the incidence of IDDM, like celiac
disease, is found in Europe in a general NW/SE gradient [254]. Both milk
[243, 255] and wheat [255], contain dietary components which would have
increased in European populations adopting agriculture, and have been sus-
pected elements in the pathogenesis of IDDM.
Autoimmune Diseases Associated with Cereal Grain Consumption
There are a number of autoimmune diseases in which cereal grains have
been implicated. In a few of these diseases (celiac disease and dermatitis
herpetiformis), there is a 100% certainty that cereal grains are the causative
agent, whereas in others the link is not so strong. Because of the increased
incidence [251] of other, simultaneously occurring autoimmune diseases in
celiac patients (table 9), many of these maladies have been examined to deter-
mine, what role, if any, cereal grains may play in their etiology.
Celiac Disease. Marsh [256] stated: ‘Despite the central importance of
wheat as a dietary staple throughout the world, it is astounding that its
presumptive role in precipitating celiac sprue disease was discovered only 40
years ago by the Dutch pediatrician W.K. Dicke.’ Indeed, it is ‘astounding’
that humanity was unaware, until only relatively recently, that an ordinary
and commonplace food such as cereal grains could be responsible for a disease
which aicts between 1 and 3.5 people per 1,000 in Europe [257]. The precise
mechanism by which certain peptide sequences in the alcohol-soluble fraction
(gliadin) of wheat, rye and barley elicit celiac disease is still poorly understood
[258]. However, there is an increasing consensus that celiac disease is an
autoimmune disease [230, 259], mediated by T lymphocytes within the lamina
propria which damage intestinal villi.
It is probable that the process of molecular mimicry is involved in the
development of celiac disease [232]. Kagnoet al. [260] have shown that wheat
alpha-gliadin shares an amino acid sequence homology with the E1B protein
of human adenovirus 12 (Ad-12) and that antibodies directed against E1B
cross-react with alpha-gliadin. Since 89% of patients with celiac disease, versus
17% of controls, showed evidence of Ad-12 infection [260], it is possible that
51Cereal Grains: Humanity’s Double-Edged Sword
Ad-12 infection in individuals genetically predisposed to celiac disease (HLA-
DQ2) may facilitate development of the disease by virtue of cross-reactivity,
perhaps by three-way mimicry among the two foreign antigens (Ad-12, gliadin),
the target tissue and even HLA proteins, themselves [261].
Celiac disease is typically screened by detection of circulating IgG antibod-
ies to reticulin (ARA), endomysium (AMA) or gliadin (AGA). Endomysium
is the connective tissue surrounding smooth muscle fibers of the gut, whereas
reticulin are fibrils connecting smooth muscle cells and elastic tissue within
endomysium. The specific protein or proteins (autoantigen) within reticulin
and endomysium to which ARA and AMA are directed is unclear; however
recent studies have indicated both transglutaminase [262] and calreticulin [245]
are likely candidates. It has been shown that gliadin and calreticulin share
homologous amino acid sequences with one another, and anticalreticulin anti-
bodies cross react with gliadin [245], thereby supporting the concept that celiac
disease involves molecular mimicry [263]. Because gliadins are a complex
mixture of proteins that contain at least 40 dierent components in a single
variety of wheat [264], it is unlikely that a single gliadin protein causes celiac
disease, but rather several prolamines that express similar or identical epitopic
domains [265]. Thus, it is likely that multiple gliadin proteins can cross react
with at least one and probably more autoantigens in celiac disease, similar to
that observed in other autoimmune diseases [246]. The self antigen with the
closest molecular structure (following HLA presentation) to the mimicking
foreign peptide will likely be primarily responsible for the destructive auto-
immune response wrought by T lymphocytes.
A general overview of celiac disease would then suggest that dietary WGA
bound to enterocytes increases the permeability of the gut [217], thereby
allowing entry of both WGA [211] and other gliadin proteins into systemic
circulation. WGA or perhaps gliadin, by virtue of their lectin properties, induce
the inappropriate expression of HLA class II molecules, which may present
a variety of internally processed proteins (including calreticulin), on the surface
of intestinal epithelial cells [235]. In genetically susceptible individuals (HLA-
DQ2), the molecular conformation of the HLA antigenic binding groove is
subtly altered [247] so that the presentation of the internally processed, mimick-
ing protein (calreticulin) causes a proliferative rather than anergizing response
upon engagement with the T-cell receptor. Circulating gliadin proteins are
engulfed by macrophages which then present the processed gliadin peptide
fragments, viaHLA molecules, to CD4+T lymphocytes. Because these gliadin
peptide fragments presented by the macrophage have amino acid sequences
homologous to those of the endogenous protein (calreticulin), which is artifi-
cially expressed upon the surface of intestinal epithelial cells by cereal grain
lectin stimulation, cytotoxic CD4+T lymphocytes initiate an immune re-
sponse both upon the macrophage expressing fragments of the foreign peptide
(gliadin) as well as upon the intestinal epithelial cell expressing the homologous,
endogenous protein (calreticulin). Viruses suspected of causing autoimmune
disease operate in a likewise manner to induce the inappropriate expression
of autoantigens, including calreticulin [266] on the cell surface, as well as
maintaining structural homology to a self antigen [233, 242]. Once the mimicry
process begins, the destructive autoimmune response may be further enhanced
by the ability of WGA [234, 241] or viruses [210] to induce T-cell proliferation,
mediated by either lectin [238, 239] or viral [210] IFN-cstimulation.
Dermatitis Herpetiformis. Dermatitis herpetiformis (DH) is characterized
as an intensely itching papulovesicular skin disease diagnosed by IgA deposits
in the basement membrane [267]. DH can be successfully treated by a gluten-
free diet, although it may take years before the dermatitis is fully controlled
by diet only [231]. DH and celiac disease share a common genetic basis (HLA-
DQ2), and approximately 60% of DH patients have moderate to severe small-
bowel villous atrophy [251]. As with celiac disease, the precise tissue autoan-
tigen in DH is unclear. However, there are similar structural homologies
between human elastin and high-molecular weight glutenin (a wheat gluten
protein) which have been shown to cause IgA cross-reactivity of the two
proteins in human serum [268]. Bodvarsson et al. [268] have suggested that
DH may be due in part to this cross-reactivity (mimicry) between dietary
glutenin and dermal elastin.
Insulin-Dependent Diabetes mellitus. IDDM is a complex disease involving
numerous putative environmental factors; however it has been suggested that
shared amino acid sequences (i.e. molecular mimicry) between viral proteins
and pancreatic beta-cell proteins (e.g. coxsackie virus protein and glutamate
decarboxylase) represent a likely mechanism causing the disease [269]. In
addition to viral proteins, dietary proteins in cow’s milk cross react with a
beta-cell antigen and are therefore suspected environmental etiologic agents
[243]. However, as pointed out by Schatz and Maclaren [270], the feeding of
wheat in animal models of IDDM elicits a greater incidence of the disease
than does milk. Numerous studies have demonstrated that feeding of wheat
gluten to rats or mice, which are genetically predisposed to IDDM, increases
the expression of the disease [255, 271, 272]. It remains elusive how wheat
proteins increase the expression of IDDM in genetically predisposed animals.
Because Ro/SS-A autoantibodies are found in nonobese (NOD) diabetic mice
[273] and in humans with IDDM [274] and in humans with both IDDM
and Sjogren’s syndrome [275], the molecular mimicry which occurs between
calreticulin and wheat gliadin peptides [245] may be involved in the auto-
immune response. Although there is conflicting data regarding calreticulin’s
role in the Ro/SS-A complex [276], recent evidence unequivocally shows that
53Cereal Grains: Humanity’s Double-Edged Sword
calreticulin exists in a form directly associated with all four varieties of human
Ro/SS-A RNA molecules [276].
¨gren’s Syndrome. Sjo
¨gren’s syndrome is an autoimmune disease charac-
terized by lymphocytic infiltration of CD4+T cells into salivary and lachrymal
glands leading to symptomatic dry eyes and mouth [278]. Circulating antibody
levels of gliadin and a reticulin glycoprotein have been found to be higher in
patients with Sjo
¨gren’s syndrome than in controls [279]. Furthermore, Sjo
syndrome occurs at a level approximately 10 times higher in celiac subjects than
in normals [280]. Ro/SS-A autoantibodies are typically elevated in Sjo
syndrome [275, 278], and because the four cytoplasmic RNA components of
Ro/SS-A (hY RNA 1,3,4,5) exist together with a form of calreticulin [277],
the molecular mimicry between alpha-gliadin and calreticulin [245] may in
part be responsible for the autoimmune response. Calreticulin is normally a
cytolsolic protein, however viral infection has been shown to increase its cell-
surface expression [266]. In a similar manner, lectins (including gliadin) are
known to induce inappropriate expression of HLA class II molecules at nucle-
ated cell surfaces [235, 237].
In Sjo
¨gren’s syndrome an additional suspected autoantigen, termed
BM180, has been isolated from basement membrane in the lacrimal and parotid
exocrine secretory glands, and which cross-reacts with alpha-gliadin proteins
[246]. Astonishingly, BM 180 contains an N-terminal amino acid sequence
(VRVPVPQLQPQNP) identical to that found in alpha-gliadin, and mono- and
polyclonal antibody data therefore suggest that BM 180 is a mammalian form
ofgliadin [246]. Because BM 180may be required forstimulussecretingcoupling
by lacrimal acinar cells [246], autoimmune attacks by CD4+T cells, primed
by previous interaction with macrophages presenting alpha-gliadin, would be
directed, via molecular mimicry, at lacrimal and parotid cells inappropriately
presenting BM 180. Despite the suggestive link between celiac disease and
¨gren’s syndrome, as well as the molecular mimicry evidence, there are scant
clinicaltrialsevaluatingthe eectivenessof gluten-free diets in Sjo
¨gren’s syndrome.
Rheumatoid Arthritis. Rheumatoid arthritis is a complex autoimmune
disease involving numerous environmental and genetic components, and sim-
ilar to a number of other autoimmune diseases is found more often in celiac
patients [251, 281]. Multiple studies of arthritic patients have demonstrated
elevated antibody levels for gliadin [282, 283], and gluten-freee diets have
been shown to be eective in reducing arthritic symptoms in celiac patients
[283–285]. No large clinical trials have been undertaken to specifically examine
the eectiveness of gluten-free diets in the treatment of arthritis; however there
are numerous case studies reporting alleviation of arthritis symptoms with
grain-free diets [286–289]. Additionally, complete withdrawal of food during
fasting reduces objective and subjective indices of the disease [290].
Because serum antibodies in arthritic patients recognize the antigen, bo-
vine serum albumin (BSA) from cow’s milk, and since BSA contains homo-
logous amino acid sequences with human collagen type I, Clq, it has been
suggested that molecular mimicry represents a potential mechanism by which
milk consumption may trigger arthritis [291]. In addition to milk, glycine-rich
cell wall protein (GRP 1.8), which is ubiquitous in cereal grains and legumes,
shares significant amino acid homology with fibrillar collagen and procollagen
and has been shown to stimulate T cells from the synovial fluid of juvenile
and adult rheumatoid arthritis patients [292]. A third dietary antigen which
may also induce rheumatoid arthritis via molecular mimicry is the alpha-
gliadin component of wheat which shares significant amino acid sequences with
calreticulin [245]. Anticalreticulin antibodies have been found in rheumatoid
arthritis patients [293], and HLA-DR4 molecules from arthritic patients are
known to present a peptide fragment derived from calreticulin [294]. Dietary
antigens from three food sources (milk, grains and legumes) contain multiple
peptides which mimic those found in joint tissue from arthritis patients,
whereas grains and legumes additionally contain lectins which can induce
inappropriate presentation of HLA class II molecules [235, 237], consequently,
future dietary interventions aimed at reducing arthritis symptoms would need
to consider these potential confounding eects.
Other Autoimmune Diseases. IgA nephropathy is the most common form
of primary glomerulonephritis worldwide, and about one quarter of these
patients progress to terminal renal failure 10 years after the apparent clinical
onset [295]. IgA nephropathy is characterized by deposition of circulating IgA-
containing immune complexes (IgAIC) in the mesangium. IgA nephropathy
patients maintain increased intestinal permeability [296], elevated circulating
antibodies to gliadin [296, 297], and have serum that contains exogenous
lectins which induce interleukin-6 (IL-6), a nephritogenic cytokine [298]. In
rodent models, IgA nephropathy can be induced by gliadin-containing diets
and have been shown to significantly increase both gliadin antibodies and
IgA mesangial deposits compared to gliadin-free controls [299]. Humans
following gluten-free diets have shown reduced IgA antigens and reduced
levels of IgAIC, however these diets do not appear to alter the progression
towards renal failure [300]. Amore et al. [240] have suggested that gliadin,
because of its lectin activity may favor the binding of IgA and IgAIC to
mesangial cells, thereby enhancing both IgA mesangial trapping and in situ
IgA deposit formation.
The cause of recurrent aphthous stomatitis (canker sores) is unknown;
however it is suspected to be mediated by immunological mechanisms inter-
acting with an undefined target tissue [301]. O’Farrelly et al. [302] have shown
that 4 of 11 aphthous stomatitis patients had raised levels of antibodies to
55Cereal Grains: Humanity’s Double-Edged Sword
alpha-gliadin, and in 3 of these 4 subjects, the ulceration remitted on a
gluten-free diet and relapsed upon gluten challenge. Other studies of aphthous
stomatitis patients have shown favorable responses to gluten-free diets in
some, but not all aphthous stomatitis patients [303, 304]. The mechanism
by which wheat gluten is associated with the development of aphthous ulcera-
tions is unclear.
There is increasing recognition that molecular mimicry is a highly likely
mechanism underlying the development of multiple sclerosis [305, 306]. A
number of viral and bacterial proteins have been shown to cross react with
myelin basic protein (MBP) [305], one of the suspected target antigens in
multiple sclerosis (MS). Because the blood-brain barrier limits access to the
CNS to activated T cells, invasion of the CNS requires autoreactive T cells
to be stimulated in the peripheral immune system. Therefore, it is possible
that dietary antigens causing persistent T-cell stimulation, and bearing similar
amino acid homologies to the various myelin and nonmyelin target antigens,
could cause polyclonal expansion of autoreactive T cells in the periphery, in
a manner similar to that observed for bacterial and viral antigens. Although
no homologous amino acid sequences have yet been identified between dietary
antigens and suspected autoantigens in MS patients, there are epidemiological
reports which link both wheat [307] and milk [308] consumption to the inci-
dence of multiple sclerosis, consistent with the observations that MS is posi-
tively correlated to latitude [309]. There are a number of case reports showing
remission of MS on gluten-free diets [310–312]. Furthermore, some MS pa-
tients have altered intestinal mucosa [313, 314], suggestive of increased intes-
tinal permeability to dietary antigens. However, MS patients generally do not
show increased antibodies to gliadin [315], and a number of case studies have
not shown beneficial eects of gluten-free diets [316, 317]. If dietary antigens
containing amino acid sequences similar to putative self antigens, indeed, do
stimulate peripheral T cells, then interventions evaluating the influence of diet
upon MS would need to consider the potential confounding influence of
multiple dietary antigens (dairy products, grains, legumes, and yeast) capable
of either molecular mimicry and/or T-cell stimulation.
Psychological and Neurological Illnesses Associated with
Cereal Grain Consumption
Neurological complications have long been recognized in celiac patients
and can include epilepsy, cerebellar ataxias, dementia, degenerative central
nervous system disease, peripheral neuropathies (of axonal or demyelinating
type), and myopathies [318]. A recent study showed that 57% of patients
with neuropathies of unknown cause (25 ataxia, 20 peripheral neuropathy,
5 mononeuritis multiplex, 4 myopathy, 3 motor myopathy, 2 myelopathy)
demonstrated positive titres for antigliadin antibodies, and 16% (40 times
higher than the general population) of this group also had celiac disease
[315]. The cause of neurological dysfunction associated with celiac disease and
antigliadin antibodies is unknown; however it has been suspected that an
immunological mechanism may be involved [315, 318]. Although no clinical
trials have yet been conducted of strict adherence to a gluten-free diet, it has
been suggested that such a diet may result in stabilization or even improvement
of neurological dysfunction [315].
Epilepsy is observed in 5.5 of 100 cases of celiac disease, and in about
half of these patients bilateral parietooccipital calcifications are found in the
cortical or subcortical areas [319]. This triple association has a common HLA
haplotype and is thought to occur via an underlying immunological disorder
[320]. If gluten-free diets are adopted soon after the onset of epilepsy, seizures
can be severely reduced or eliminated [321, 322].
The behavioral syndrome of autism in children is characterized by few
or no language and imaginative skills, repetitive and self-injurious behavior
and abnormal responses to human and environmental stimuli. The cause of
the syndrome is poorly understood, however it is thought that both genetic
[323] and immunological factors [324] may be involved. Autistic children main-
tain HLA haplotypes [323] that frequently occur in other autoimmune diseases
including rheumatoid arthritis, and they display autoantibodies to myelin
basic protein [324]. Some autistic patients have been shown to have increased
antibodies to gluten and casein [325]; however, the amelioration of symptoms
in response to gluten-free diets has been equivocal [325, 326].
It has been more than 30 years since Dohan first formulated the hypothesis
that opioid peptides found in the enzymatic digests of cereal grain gluten are
a potentiating factor evoking schizophrenia in susceptible genotypes [327,
328]. In a meta-analysis of the more than 50 articles regarding the role of
cereal grains in the etiology of schizophrenia published between 1966 and
1990, Lorenz [329] concluded: ‘In populations eating little or no wheat, rye
and barley, the prevalence of schizophrenia is quite low and about the same
regardless of type of acculturating influence.’ In support of this conclusion
are multiple clinical studies [330–332] which have shown that schizophrenic
symptoms improved on gluten-free diets and worsened upon reintroduction.
Furthermore, the incidence of schizophrenia is about 30 times higher in celiac
patients than in the general population [329], and schizophrenics have elevated
circulating IgA antibodies to gliadin [333].
There is increasing recognition that in a subset of schizophrenic patients,
autoimmune mechanisms are involved in the etiology of the disease [334,
57Cereal Grains: Humanity’s Double-Edged Sword
335]. Schizophrenics maintain several immunological abnormalities including
increased prevalence of autoimmune disease and antinuclear and other autoan-
tibodies, decreased lymphocyte interleukin-2 (IL-2) production, increased
serum IL-2 receptor concentration, increased serum IL-6 concentrations and
an association with HLA antigens [334, 335]. Similar to other autoimmune
diseases, cereal grains may potentiate their putative autoimmune eects in
schizophrenia via molecular mimicry in which self antigens in brain tissue are
recognized and destroyed by autoaggressive T lymphocytes because of the
structural similarity between brain antigens and foreign dietary antigens. Al-
though this hypothesis may be operative in some schizophrenics, the rapid
remission of symptoms by gluten-free diets, observed in clinical trials [330–332],
is suggestive that an acute mechanism may be additionally responsible, since
it is unlikely that damaged neuronal cells could regenerate in such a short
time frame. In this regard, it has been long recognized that certain gluten
peptides derived from wheat have high opioid-like activity that is naloxone
reversible [336, 337]. The structural identity of these opioid peptides derived
from the enzymatic digest of wheat gluten have recently been characterized and
sequenced [338–340], and there is significant evidence utilizing radiolabelled
gliadin isotopes to show that these peptides reach opioid receptors in the brain
and peripheral organs [329]. Thus, it is possible that cereal grains may elicit
behavioral changes via direct interaction with central nervous system opioid
receptors or perhaps via simultaneous immune-mediated reactions against
central nervous system antigens.
From an evolutionary perspective, humanity’s adoption of agriculture,
and hence cereal grain consumption, is a relatively recent phenomenon. Table
3 shows that this event occurred in most parts of the world between 5,500
and 10,000 years ago. Cereal grains represent a biologically novel food for
mankind [341, 342], consequently there is considerable genetic discordance
between this staple food, and the foods to which our species is genetically
Cereal grains lack a number of nutrients which are essential for human
health and well-being; additionally they contain numerous vitamins and min-
erals with low biological availability. Furthermore, the inability of humans to
physiologically overcome cereal grain antinutrients (phytates, alkylresorcinols,
protease inhibitors, lectins, etc.) is indicative of the evolutionary novelty of
this food for our species. This genetic maladaptation between human nutrient
requirements and those nutrients found in cereal grains manifests itself as
vitamin and mineral deficiencies and other nutritionally related disorders,
particularly when cereal grains are consumed in excessive quantity. More
disturbing is the ability of cereal grain proteins (protease inhibitors, lectins,
opioids and storage peptides) to interact with and alter human physiology.
These interactions likely occur because of physiological similarities (resultant
from phylogenetic commonalities) shared between humans and many herbi-
vores which have traditionally preyed upon the gramineae family. The second-
ary compounds (antinutrients) occurring in cereal grains (gramineae family),
were shaped by eons of selective pressure and were designed to prevent pre-
dation from traditional predators (insects, birds and ungulates) of this family
of plants. Because primates and hominids evolved in the tropical forest, wherein
dicotyledonous plants prevailed, the human physiology has virtually no evolu-
tionary experience with monocotyledonous cereal grains, and hence very little
adaptive response to a food group which now represents the staple food for
many of the world’s peoples.
Cereal grains obviously can be included in moderate amounts in the diets
of most people without any noticeable, deleterious health eects, and herein
lies their strength. When combined with a variety of both animal- and plant-
based foods, they provide a cheap and plentiful caloric source, capable of
sustaining and promoting human life. The ecologic, energetic eciency
wrought by the widespread cultivation and domestication of cereal grains
allowed for the dramatic expansion of worldwide human populations, which
in turn, ultimately led to humanity’s enormous cultural and technological
accomplishments. The downside of cereal grain consumption is their ability
to disrupt health and well being in virtually all people when consumed in
excessive quantity. This information has only been empirically known since
the discovery of vitamins, minerals and certain antinutrients in the early part
of this century.
The realization that cereal grain peptides interact with and induce change
in human physiology and therefore elicit disease and dysfunction is even newer
and dates to the early 1950s with the discovery of wheat gluten as the causative
agent in celiac disease. In the past 10 years has come the evidence (admittedly
incomplete) that certain cereal peptides may interact with the immune system
to elicit a variety of autoimmune-related diseases. These two seemingly distinct
entities (autoimmune disease and consumption of a staple food) are connected
primarily through an evolutionary collision of dissimilar genes which bear
identical products (molecular mimicry). Although, cereal grain consumption
may appear to be historically remote, it is biologically recent; consequently
the human immune, digestive and endocrine systems have not yet fully adapted
to a food group which provides 56% of humanity’s food energy and 50% of
its protein.
59Cereal Grains: Humanity’s Double-Edged Sword
Cereal grains are truly humanity’s double-edged sword. Forwithout them,
our species would likely have never evolved the complex cultural and techno-
logical innovations which allowed our departure from the hunter-gatherer
niche. However, because of the dissonance between human evolutionary nutri-
tional requirements and the nutrient content of these domesticated grasses,
many of the world’s people suer disease and dysfunction directly attributable
to the consumption of these foods.
I wish to thank the following individuals for reviewing this manuscript and their
constructive criticisms: Jennie Brand-Miller, S. Boyd Eaton, Staan Lindeberg, Klaus Lorenz,
and Norman Salem. A particular debt of gratitude goes to R. Shatin for his pioneering
thoughts and writings.
1 Stoskopf NC: Cereal Grain Crops. Reston, Reston Publishing Company, 1985.
2 Mangelsdorf PC: Genetic potentials for increasing yields of food crops and animals. Proc Natl
Acad Sci 1966;56:370–375.
3 Harlan JR: Crops and Man. Madison, American Society of Agronomy, 1992.
4 Eaton SB, Nelson DA: Calcium in evolutionary perspective. Am J Clin Nutr 1991;54:281s–287s.
5 Sinclair AJ, O’Dea K: Fats in human diets through history: Is the western diet out of step?; in
Wood JD, Fisher AV (eds): Reducing Fat in Meat Animals. London, Elsevier Applied Science, 1990,
pp 1–47.
6 Eaton SB: Humans, lipids and evolution. Lipids 1992;27:814–820.
7 Eaton SB, Konner M: Paleolithic nutrition a consideration of its nature and current implications.
N Engl J Med 1985;312:283–289.
8 Lee-Thorp JA, van der Merwe NJ, Brain CK: Diet of Australopithecus robustus at Swartkrans
from stable carbon isotopic analysis. J Hum Evol 1994;27:361–372.
9 Eaton SB, Konner M, Shostak M: Stone agers in the fast lane: Chronic degenerative diseases in
evolutionary perspective. Am J Med 1988;84:739–749.
10 Achterberg C, McDonnell E, Bagby R: How to put the food guide pyramid into practice. J Am
Diet Assoc 1994;94:1030–1035.
11 Stuart AJ: Mammalian extinctions in the late pleistocene of Northern Eurasia and North America.
Biol Rev Cambridge Phil Soc 1991;66:453–562.
12 Bradbury JH, Collins JG, Pyliotis NA: Digestibility of proteins of the histological components of
cooked and raw rice. Br J Nutr 1984;52:507–513.
13 Stephen AM: Whole grains – Impact of consuming whole grains on physiological eects of dietary
fiber and starch. Crit Rev Food Sci Nutr 1994;34:499–511.
14 Katz SH, Hediger ML, Valleroy LA: Traditional maize processing techniques in the new world.
Science 1974;184:765–773.
15 Eaton SB, Shostak M, Konner M: The Paleolithic Prescription. New York, Harper & Row, 1988.
16 Lorenz K, Lee VA: The nutritional and physiological impact of cereal products in human nutrition.
Crit Rev Food Sci Nutr 1977;8:383–456.
17 Angel JL: Paleoecology, paleodemography and health; in Polgar S (ed): Population, Ecology and
Social Evolution. The Hague, Mouton, 1975, pp 167–190.
18 Nickens PR: Stature reduction as an adaptive response to food production in Mesoamerica.
J Archaeol Sci 1976;3:31–41.
19 Cohen MN: The significance of long-term changes in human diet and food economy; in Harris M,
Ross EB (eds): Food and Evolution. Toward a Theory of Human Food Habits. Philadelphia, Temple
University Press, 1987, pp 261–283.
20 Cassidy CM: Nutrition and health in agriculturalists and hunter-gatherers: A case study of two
prehistoric populations; in Jerome RF, Kandel RF, Pelto GH (eds): Nutritional Anthropology:
Contemporary Approaches to Diet and Culture. Pleasantville, Redgrave Publishing Company, 1980,
pp 117–145.
21 Diamond J: The Third Chimpanzee: The Evolution and Future of the Human Animal. New York,
Harper Collins, 1992, pp 180–191.
22 Lallo JW, Armelagos GJ, Mensforth RP: The role of diet, disease, and physiology in the origin of
porotic hyperostosis. Human Biol 1977;49:471–473.
23 Turner CG: Dental anthropological indications of agriculture among the Jomon people of central
Japan. Am J Phys Anthropol 1979;51:619–636.
24 E-Siong T: Carotenoids and retinoids in human nutrition. Crit Rev Food Sci Nutr 1992;31:103–163.
25 Rahmathullah L, Underwood B, Thulasiraj RD, Milton RC, Ramaswamy K, Rahmathullah R,
Babu G: Reduced mortality among children in southern India receiving a small weekly dose of
vitamin A. N Engl J Med 1990;323:929–935.
26 Lie C, Ying C, En-Lin W, Brun T, Geissler C: Impact of large-dose vitamin A supplementation on
childhood diarrhoea, respiratory disease and growth. Eur J Clin Nutr 1992;47:88–96.
27 Hussey GD, Klein M: A randomized, controlled trial of vitamin A in children with severe measles.
N Engl J Med 1990;323:160–164.
28 Glasziou PP, Mackerras DEM: Vitamin A supplementation in infectious diseases: Meta-analysis.
Br Med J 1993;306:360–670.
29 Ziegler RG: Vegetables, fruits, and carotenoids and the risk of cancer. Am J Clin Nutr 1991;53:
30 Steinmetz KA, Potter JD: Vegetables, fruit and cancer. I. Epidemiology. Cancer Causes Control
31 Knekt P, Reunanen A, Jarvinen R, Seppanen R: Antioxidant vitamin intake and coronary mortality
in a longitudinal population study. Am J Epidemiology 1994;139:1180–1189.
32 Verlangieri AJ, Kapeghian JC, El-Dean S, Bush M: Fruit and vegetable consumption and cardiovas-
cular mortality. Med Hypoth 1985;16:7–15.
33 Patterson BH, Block G, Rosenberger WF, Pee W, Kahle LL: Fruit and vegetables in the American
diet: Data from the NHANES II survey. Am J Pub Health 1990;80:1443–1449.
34 Gaur R, Singh NY: Nutritional status among rural Meitei children of Manipur, India. Am J Hum
Biol 1994;6:731–740.
35 Block G, PattersonB, Subar A: Fruit, vegetables, and cancer prevention: A review of the epidemiolog-
ical evidence. Nutr Cancer 1992;18:1–29.
36 Begom R, Singh RB: Prevalence of coronary artery disease and its risk factors in the urban
population of south and north India. Acta Cardiol 1995;50:227–240.
37 Singh RB, Niaz MA, Bishnoi I, Sharma JP, Gupta S, Rastogi SS, Singh R, Begum R, Chibo H,
Shoumin Z: Diet, antioxidant vitamins, oxidative stress and risk of coronary artery disease: The
Peerzada prospective study. Acta Cardiol 1994;49:453–467.
38 Singh RB, Ghosh S, Niaz MA, Singh R, Beegum R, Chibo H, Shoumin Z, Postiglione A: Dietary
intake, plasma levels of antioxidant vitamins, and oxidative stress in relation to coronary artery
disease in elderly subjects. Am J Cardiol 1995;76:1233–1238.
39 Singh RB, Shanti S, Rastogi SS, Niaq MA, Ghosh S, Singh R, Gupta S: Eect of fat modified and
fruit and vegetable enriched diets on blood lipids in the Indian diet Heart Study. Am J Cardiol
40 Herbert V: Vitamin B-12: Plant sources, requirements, and assay. Am J Clin Nutr 1988;48:852–858.
41 Dwyer JT: Health aspects of vegetarian diets. Am J Clin Nutr 1988;48:712–738.
42 Herbert V: Staging vitamin B-12 (cobalamin) status in vegetarians. Am J Clin Nutr 1994;59:
61Cereal Grains: Humanity’s Double-Edged Sword
43 Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH: Vitamin status and intake as primary
determinants of homocysteinemia in an elderly population. JAMA 1993;270:2693–2698.
44 Fryer RH, Wilson BD, Gubler DB, Fitzgerald LA, Rodgers GM: Homocysteine, a risk factor
for premature vascular disease and thrombosis, induces tissue factor activity in endothelial cells.
Arterioscler Thromb 1993;13:1327–1333.
45 Kumar S, Ghosh K, Das KC: Serum B
levels in an Indian population: An evaluation of three
assay methods. Med Lab Sci 1989;46:120–126.
46 Chanarin I, O’Shea AM, Malkowska V, Rinsler MG: Megaloblastic anaemia in a vegetarian Hindu
community. Lancet 1985;ii:1168–1172.
47 Allen LH, Rosado JL, Casterline JE, Martinez H, Lopez P, Munoz E, Black AK: Vitamin B-12
deficiency and malabsorption are highly prevalent in rural Mexican communities. Am J Clin Nutr
48 Jukes TH: Historical perspectives: The prevention and conquest of scurvy, beri-beri, and pellagra.
Prevent Med 1989;18:877–883.
49 Rolfe M, Walker RW, Samba KN, Cham K: Urban beri-beri in the Gambia, West Africa. Trans
Royal Soc Trop Med Hygiene 1993;87:114–115.
50 Bollet AJ: Politics and pellagra: The epidemic of pellagra in the US in the early twentieth century.
Yale J Biol Med 1992;65:211–221.
51 Roe DA: A Plague of Corn, the Social History of Pellagra. Ithaca, Cornell University Press, 1973.
52 Malfait P, Moren A, Dillon JC, Brodel A, Begkoyian G, Etchegorry MG, Malenga G, Hakewill
P: An outbreak of pellagra related to changes in dietary niacin among Mozambican refugees in
Malawi. Int J Epidemiol 1993;22:504–511.
53 Segal I, Hale M, Demetriou A, Mohamed AE: Pathological eects of pellagra on the esophagus.
Nutr Cancer 1990;14:233–238.
54 Horwitt MK, Harvey CC, Rothwell WS, Curler JL, Haron D: Tryptophan-niacin relationships
in man. Studies with diets deficient in riboflavin and niacin, together with observations on the
excretion of nitrogen and niacin metabolites. J Nutr 1956;60(suppl 1):1–43.
55 Carpenter KJ, Lewin WJ: A critical review: A reexamination of the composition of diets associated
with pellagra. J Nutr 1985;115:543–552.
56 Pusztai A: Review: Dietary lectins are metabolic signals for the gut and modulate immune and
hormone functions. Eur J Clin Nutr 1993;47:691–699.
57 Nachbar MS, Oppenheim JD: Lectins in the United States diet: A survey of lectins in commonly
consumed foods and a review of the literature. Am J Clin Nutr 1980;33:2338–2345.
58 Mehta SK, Kaur S, Avasthi G, Wig NN, Chhuttani PN: Small intestinal deficit in pellagra. Am J
Clin Nutr 1972;25:545–549.
59 DiLorenzo PA: Pellagra-like syndrome associated with isoniazid therapy. Acta Derm Venereol 1967;
60 Reynolds RD: Bioavailability of vitamin B-6 from plant foods. Am J Clin Nutr 1988;48:863–867.
61 Gilbert JA, Gregory JF: Pyridoxine-5-beta-D-glucoside aects the metabolic utilization of pyridox-
ine in rats. J Nutr 1992;122:1029–1035.
62 Trumbo PR, GregoryJF, Sartain DB: Incomplete utilization of pyridoxine-beta-glucoside as vitamin
B-6 in the rats. J Nutr 1988;118:170–175.
63 Bamji MS, Sarma KV:Relationship between biochemical and clinical indices of B-vitamin deficiency.
A study of rural school boys. Br J Nutr 1979;41:431–441.
64 Natarajan VS, Ravindran S, SivashanmugamS: Assessment of nutrient intake and associated factors
in an Indian elderly population. Age Ageing 1993;22:103–108.
65 Blair R, Misir R: Biotin bioavailability from protein supplements and cereal grains for growing
broiler chickens. Int J Vit Nutr Res 1989;59:55–58.
66 Kopinksi JS, Leibholz J, Bryden WL: Biotin studies in pigs: Biotin availability in feedstus for pigs
and chickens. Brit J Nutr 1989;62:773–780.
67 Watkins BA: Dietary biotin eects on desaturation and elongation of
C-linoleic acid in the chicken.
Nutr Res 1990;10:325–334.
68 Proud VK, Rizzo WB, Patterson JW, Heard GS, Wolf B: Fatty acid alterations and carboxylase
deficiencies in the skin of biotin-deficient rats. Am J Clin Nutr 1990;51:853–858.
69 Hochman LG, Scher RK, Meyerson MS: Brittle nails: Response to daily biotin supplementation.
Cutis 1993;51:303–305.
70 Gittelman AL: Beyond Pritikin. New York, Bantam Books, 1988, p 11.
71 James WPT, Ralph A, Sanchez-Castillo CP: The dominance of salt in manufactured food in the
sodium intake of auent societies. Lancet 1987;i:426.
72 Calvo MS: Dietary phosphorus, calcium metabolism and bone. J Nutr 1993;123:1627–1633.
73 Norman DA, Fordtran JS, Brinkley LJ, et al: Jejunal and ileal adaptation to alterations in dietary
calcium. J Clin Invest 1981;67:1599–1603.
74 Seelig MS: The requirement of magnesium by the normal adult: Summary and analysis of published
data. Am J Clin Nutr 1964;14:342–390.
75 Torre M, Rodriguez AR, Saura-Calixto F: Eects of dietary fiber and phytic acid on mineral
availability. Crit Rev Food Sci Nutr 1991;1:1–22.
76 Berlyne GM, Ben Ari J, Nord E, Shainkin R: Bedouin osteomalacia due to calcium deprivation
caused by high phytic acid content of unleavened bread. Am J Clin Nutr 1973;26:910–911.
77 Ford JA, Colhoun EM, McIntosh WB, Dunnigan MG: Biochemical response of late rickets and
osteomalacia to a chupatty-free diet. Br Med J 1972;ii:446–447.
78 Robertson I, Ford JA, McIntosh WB, Dunnigan MG: The role of cereals in the aetiology of
nutritional rickets: The lesson of the Irish national nutritional survey 1943–8. Br J Nutr 1981;45:
79 Stephens WP, Berry JL, Klimiuk PS, Mawer EB: Annual high dose vitamin D prophylaxis in Asian
immigrants. Lancet 1981;ii:1199–1201.
80 Ford JA, McIntosh WB, Dunnigan MG: A possible relationship between high-extraction cereal
and rickets and osteomalacia. Adv Exp Med Biol 1977;81:353–362.
81 Ewer TK: Rachitogenicity of green oats. Nature 1950;166:732–733.
82 MacAulie T, Pietraszek A, McGinnis J: Variable rachitogenic eects of grain and alleviation by
extraction or supplementation with vitamin D, fat and antibiotics. Poultry Sci 1976;55:2142–
83 Hidiroglou M, Ivan M, Proulx JG, Lessard JR: Eect of a single intramuscular dose of vitamin
D on concentrations of liposoluble vitamins in the plasma of heifers winter-fed oat silage, grass
silage or hay. Can J Anim Sci 1980;60:311–318.
84 Sly MR, van der Walt WH, Du Bruyn DB, Pettifor JM, Marie PJ: Exacerbation of rickets and
osteomalacia by maize: A study of bone histomorphometry and composition in young baboons.
Calcif Tissue Int 1984;36:370–379.
85 Gibson RS, Bindra GS,Nizan P, Draper HH: The vitamin D statusof east Indian Punjabi immigrants
to Canada. Br J Nutr 1987;58:23–29.
86 Brooke OG, Brown IRF, Cleeve HJW: Observations of the vitamin D state of pregnant Asian
women in London. Br J Obstet Gynaecol 1981;88:18–26.
87 Hunt SP, O’Riordan JLH, Windo J, Truswell AS: Vitamin D status in dierent subgroups of British
Asians. Br Med J 1976;ii:1351–1354.
88 Batchelor AJ, Compston JE: Reduced plasma half-life of radio-labelled 25-hydroxyvitamin D
subjects receiving a high fiber diet. Br J Nutr 1983;49:213–216.
89 Clements MR, Johnson L, Fraser DR: A new mechanism for induced vitamin D deficiency in
calcium deprivation. Nature 1987;325:62–65.
90 Lasztity R, Lasztity L: Phytic acid in cereal technology; in Pomeranz Y (ed): Advances in Cereal
Technology. St. Paul, American Association of Cereal Chemists, 1990, vol 10, pp 309–371.
91 WHO-UNICEF: Indicators and Strategies for Iron Deficiency and Anaemia Programs: World
Health Organization Technical Report Series. New York, WHO-UNICEF, 1993.
92 Viteri FE: The consequences of iron deficiency and anemia in pregnancy on maternal health, the
foetus and the infant. Sci News 1994;11:14–17.
93 International Nutritional Anemia Consultive Groups (INACG): The eect of cereals and legumes
on iron availability. Washington, Nutrition Foundation, 1982.
94 Scrimshaw NS: Iron deficiency. Sci Am 1991;265:46–52.
95 Salunkhe DK, Jadhav SJ, Kadam SS, Chavan JK: Chemical, biochemical and biological significance
of polyphenols in cereals and legumes. Crit Rev Food Sci Nutr 1982;17:277–305.
63Cereal Grains: Humanity’s Double-Edged Sword
96 Hisayasu S, Orimo H, Migita S, Ikeda Y, Satoh K, Shinjo S, Hirai Y, Yoshino Y: Soybean protein
isolate and soybean lectin inhibit iron absorption in rats. J Nutr 1992;122:1190–1196.
97 Brune M, Rossander-Hulten L, Hallberg L, Gleerup A, Sandberg AS: Iron absorption from bread
in humans: Inhibiting eects of cereal fiber, phytate and inositol phosphates with dierent numbers
of phosphate groups. J Nutr 1992;122:442–449.
98 Hallberg L, Rossander L, Skanberg AB: Phytates and the inhibitory eect of bran on iron absorption
in man. Am J Clin Nutr 1987;45:988–996.
99 Reddy MB, Hurrell RF, Juillerat MA, Cook JD: The influence of dierent protein sources on
phytate inhibition of nonheme-iron absorption in humans. Am J Clin Nutr 1996;63:203–207.
100 Ashworth A, Milner PF, Waterlow JC: Absorption of iron from maize (Zea mays L.) and soya
beans (Glycine hispida Max.) in Jamaican infants. Br J Nutr 1973;29:269–278.
101 Tuntawiroon M, Sritongkul N, Rossander-Hulten L, Pleehachinda R, Suwanik R, Brune M, Hallberg
L: Rice and iron absorption in man. Eur J Clin Nutr 1990;44:489–497.
102 Haghshenass M, Mahloudji M, Reinhold JG, Mohammadi N: Iron deficiency anemia in an Iranian
population associated with high intake of iron. Am J Clin Nutr 1972;25:1143–1146.
103 Rossander-Hulthen L, Gleerup A, Hallberg L: Inhibitory eect of oat products on non-haem iron
absorption in man. Eur J Clin Nutr 1990;44:783–791.
104 Walter T, Dallman PR, Pizarro F, et al: Eectiveness of iron fortified infant cereal in prevention
of iron deficiency anemia. Pediatrics 1993;91:976–982.
105 Layrisse M, Chaves JF, Mendez-Castellano HM, Bosch V, Tropper E, Bastardo B, Gonzalez E:
Early response to the eect of iron fortification in the Venezuelan population. Am J Clin Nutr
106 Reinhold JG, Parsa A, Karimian N, Hammick JW, Ismail-Beigi F: Availability of zinc in leavened
and unleavened wholemeal wheaten breads as measured by solubility and uptake by rat intestine
in vitro. J Nutr 1974;104:976–982.
107 Sandstrom B, Almgren A, Kivisto B, Cederblad A: Zinc absorption in humans from meals based
on rye, barley, oatmeal, triticale and whole wheat. J Nutr 1987;117:1898–1902.
108 Halsted JA, Ronaghy HA, Abadi P, Haghshenass M, Amirhakemi GH, Barakat RM, Reinhold
JG: Zinc deficiency in man, the Shiraz experiment. Am J Med 1972;53:277–284.
109 Reinhold JG: High phytate content of rural Iranian bread: A possible cause of human zinc deficiency.
Am J Clin Nutr 1971;24:1204–1206.
110 Reinhold JG, Lahimgarzadeh A, Nasr K, Hedayati H: Eects of purified phytate and phytate
rich bread upon metabolism of zinc, calcium, phosphorus and nitrogen in man. Lancet 1973;i:
111 Golub MS, Keen CL, Gershwin ME, et al: Adolescent growth and maturation in zinc-deprived
rhesus monkeys. Am J Clin Nutr 1996;64:274–282.
112 Nakamura T, Nishiyama S, Futagoishi-Suginohara Y, Matsuda I, Higashi A: Mild to moderate
zinc deficiency in short children: Eect of zinc supplementation on linear growth velocity. J Pediatr
113 Zheng JJ, Mason JB, Rosenberg IH, Wood RJ: Measurement of zinc bioavailability from beef and
a ready-to-eat high-fiber breakfast cereal in humans: Application of a whole-gut lavage technique.
Am J Clin Nutr 1993;58:902–907.
114 Freeland-Graves JH, Bodzy PW, Eppright MA: Zinc status of vegetarians. J Am Diet Assoc 1980;
115 Brants HM, Lowik MH, Westenbrink S, Hulshof KM, Kistemaker C: Adequacy of a vegetarian
diet at old age (Dutch nutrition surveillance system). J Am Coll Nutr 1990;9:292–302.
116 Weihrauch JL, Kinsella JE, Watt BK: Comprehensive evaluation of fatty acids in foods. J Am Diet
Assoc 1976;68:335–340.
117 Salem N, Wegher B, Mena P, Uauy R: Arachidonic and docosahexaenoic acids are biosynthesized
from their 18-carbon precursors in human infants. Proc Natl Acad Sci 1996;93:49–54.
118 Pomerantz KB, Hajjar DP: Eicosanoids in regulation of arterial smooth muscle cell phenotype,
proliferative capacity, and cholesterol metabolism. Arterioscler 1989;9:413–429.
119 Simopoulos AP: Omega-3 fatty acids in the prevention-management of cardiovascular disease. Can
J Physiol Pharmacol 1997;75:234–239.
120 Kremmer JM, Jubiz W, Michalek A, Rynes RI, Bartholomew LE, Bigaouette J, Timchaulk M,
Beeler D, Lininger L: Fish oil fatty acid supplementation in active rheumatoid arthritis. Ann Intern
Med 1987;106:497–503.
121 Ross E: The role of marine fish oils in the treatment of ulcerative colitis. Nutr Rev 1993;51:
122 Weber PC: Fish oil fatty acids and cardiovascular function: Epidemiology and biochemical mecha-
nisms. Biochem Soc Trans 1990;18:1045–1049.
123 Sanders TAB, Reddy S: Vegetarian diets and children. Am J Clin Nutr 1994;59:1176S–1181S.
124 Uauy RD, Birch DG, Birch EE, Tyson JE, Homan DR: Eect of dietary omega-3 fatty acids on
retinal function of very low birth weight neonates. Pediatr Res 1990;28:485–492.
125 Reddy S, Sanders TAB, Obeid O: The influence of maternal vegetarian diet on essential fatty acid
status of the newborn. Eur J Clin Nutr 1994;48:358–368.
126 Siguel EN, Lerman RH: Role of essential fatty acids: Dangers in theUS Department of Agriculture
dietary recommendations (‘pyramid’) and in low fat diets. Am J Clin Nutr 1994;60:973.
127 Anderson GH: Dietary patterns vs dietary recommendations: Identifying the gaps for complex
carbohydrate. Crit Rev Food Sci Nutr 1994;34:435–440.
128 Ghafoorunissa: Essential fatty acid nutritional status of apparently normal Indian men. Hum Nutr
Clin Nutr 1984;38C:269–278.
129 Miller GJ, Kotecha S, Wilkinson WH, Wilkes H, Stirling Y, Sanders TAB, Broadhurst A, Allison
J, Meade TW: Dietary and other characteristics relevant for coronary heart disease in men of Indian,
West Indian and European descent in London. Atherosclerosis 1988;70:63–72.
130 McKeigue PM, Adelstein AM, Shipley MJ, Riemersma RA, Marmot MG, Hunt SP, Butler SM,
Turner PR: Diet and risk factors for coronary heart disease in asians in northwest London. Lancet
131 Lands WE: Eicosanoids and health. Ann NY Acad Sci 1993;676:46–59.
132 Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL: Beyond cholesterol: Modification
of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989;320:915–924.
133 Louheranta AM, Porkkala-Sarataho EK, Nyyssonen MK, Salonen RM, Salonen JT: Linoleic acid
intake and susceptibility of very low density and low-density lipoproteins to oxidation in men. Am
J Clin Nutr 1996;63:698–703.
134 Blankenhorn DH, Johnston RL, Mack WJ, Hafez A, El Zein MD, Vailas LI: The influence of diet
on the appearance of new lesions in human coronary arteries. JAMA 1990;263:1646–1652.
135 Hodgson JM, Wahlqvist ML, Boxall JA, Balazs ND: Can linoleic acid contribute to coronary
artery disease? Am J Clin Nutr 1993;58:228–234.
136 Allen LH: Nutritional influences on linear growth: A review. Eur J Clin Nutr 1994;48:S75–S89.
137 Castaneda C, Charnley JM, Evans WJ, Crim MC: Elderly women accommodate to low protein
diet with losses of body cell mass, muscle function, and immune response. Am J Clin Nutr 1995;
138 Chandra R: Nutrition-immunity-infection interactions in old age; in Chandra R (ed): Nutrition,
Immunity and Illness in the Elderly. New York, Pergamon Press, 1985, pp 87–96.
139 Symreng T, Anderberg B, Kagedal B, Norr A, Schildt B, Sjodahl R: Nutritional assessment and
clinical course in 112 elective surgical patients. Acta Chir Scand 1983;149:657–662.
140 Young VR, Pellet PL: Plant proteins in relation to human protein and amino acid nutrition. Am
J Clin Nutr 1994;59:1203S–1212S.
141 Young VR, Pellet PL: Wheat proteins in relation to protein requirements and availability of amino
acids. Am J Clin Nutr 1985;41:1077–1090.
142 WHO/FAO/UNU: Energy and protein requirements: WHO Technical Report Series. New York,
WHO, 1985, p 724.
143 National Research Council: Recommended Dietary Allowances, ed 10. Washington, National Acad-
emy Press, 1989.
144 Young VR: Protein and amino acid requirements in humans: Metabolic basis and current recom-
mendations. Scand J Nutr 1992;36:47–56.
145 Young VR, Bier DM, Pellet PL: A theoretical basis for increasing current estimates of the amino
acid requirements in adult man, with experimental support. Am J Clin Nutr 1989;50:80–92.
65Cereal Grains: Humanity’s Double-Edged Sword
146 Campbell WW, Crim MC, Dallal GE, Young VR, Evans WJ: Increased protein requirements in
elderly people: New data and retrospective reassessments. Am J Clin Nutr 1994;60:501–509.
147 Hartz SC, Russell RM, Rosenberg IH: Nutrition in the Elderly: The Boston Nutritional Status
Survey. London, Smith-Gordon and Company Limited, 1992.
148 DeUnamuno M, DeOliveira JED, Vannucchi H, Marchini JS: Protein requirement assessment of
elderly men on a rice and beans diet. Nutr Res 1991;11:149–157.
149 Sturman JA, Hepner GW, Hofmann AF, et al: Metabolism of (
S)taurine in man. J Nutr 1975;
150 Irving CS, Marks L, Klein PD, et al: New evidence for taurine biosynthesis in man obtained from
inhalation studies. Life Sci 1986;38:491–495.
151 Geggel HS, Ament ME, Heckenlively JR, et al: Nutritional requirements for taurine in patients
receiving long term parenteral nutrition. N Engl J Med 1985;312:142–146.
152 Vinton NE, Laidlaw SA, Ament ME, Kopple JD: Taurine concentrations in plasma and blood
cells of patients undergoing long term parenteral nutrition. Am J Clin Nutr 1986;44:398–404.
153 Laidlaw SA, Grosvenor M, Kopple JD: The taurine content of common foodstus. J Parenter
Enteral Nutr 1990;14:183–188.
154 Rana SK, Sanders TAB: Taurine concentrations in the diet, plasma, urine and breast milk of vegans
compared with omnivores. Br J Nutr 1986;56:17–27.
155 Laidlaw SA, Shultz TD, Cecchino JT, Kopple JD: Plasma and urine taurine levels in vegans. Am
J Clin Nutr 1988;47:660–663.
156 Hayes KC, Pronczuk A, Addesa AE, Stephan ZF: Taurine modulates platelet aggregation in cats
and humans. Am J Clin Nutr 1989;49:1211–1216.
157 Milei J, Ferreira R, Llesuy S, Forcada P, Covarrubias J, Boveris A: Reduction of reperfusion injury
with preoperative rapid intravenous infusion of taurine during myocardial revascularization. Am
Heart J 1992;123:339–345.
158 Schaer SW, Azuma J: Review: Myocardial physiological eects of taurine and their significance;
in Lombardini JB, Schaer SW, Azuma J (eds): Taurine. New York, Plenum Press, 1992, pp 105–120.
159 Paauw JD, Davis AT: Taurine concentrations in serum of critically injured patients and age- and
sex-matched healthy control subjects. Am J Clin Nutr 1990;52:657–660.
160 Desai TK, Maliakkal J, Kinzie JL, Ehrinpreis MN, Luk GD, Cejka J: Taurine deficiency after
intensive chemotherapy and/or radiation. Am J Clin Nutr 1992;55:708–711.
161 Lombardini JB: Taurine: Retinal function. Brain Res Rev 1991;16:151–169.
162 Eveleth PB, Tanner JM: Worldwide Variation in Human Growth. New York, Cambridge University
Press, 1976.
163 Meredith HV: Body size of infants and children around the world in relation to socioeconomic
status. Adv Child Dev Behav 1984;18:81–145.
164 Balam G, Hitto F: A physiological adaptation to undernutrition. Ann Hum Biol 1994;21:483–489.
165 Neumann CG, Harrison GG: Onset and evolution of stunting in infants and children: Examples
from the human nutrition collaborative research support program. Kenya and Egypt studies. Eur
J Clin Nutr 1994;48:S90–S102.
166 Acosta PB: Availability of essential amino acids and nitrogen in vegan diets. Am J Clin Nutr 1988;
167 Blacklock NJ: Epidemiology of renal stones; in Chisholm GD, Williams DI (eds): Scientific Founda-
tions of Urology, ed 2. London, Heineman, 1982, pp 251–259.
168 Thalut K, Rizal A, Brockis JG, Bowyer RC, Taylor TA: The endemic bladder stones of Indonesia:
Epidemiology and clinical features. Br J Urol 1976;48:617–621.
169 Ni YH, Tsau YK, Chen CH, Hsu TC, Lee JD, Tsai WS: Urolithiasis in children. Acta Paediatr
Sin 1991;32:9–16.
170 Kheradpir MH, Bodaghi E: Childhood urolithiasis in Iran with special reference to staghorn calculi.
Urol Int 1990;45:99–103.
171 Valyasevi A, Dhanamitta S: Studies of bladder stone disease in Thailand, 7. Urinary studies in
newborn and infants of hypo- and hyperendemic areas. Am J Clin Nutr 1967;20:1369–1377.
172 Wisniewski ZS, Brockis JG, Ryan GD: Urinary bladder stones in aboriginal children. Aust NZ J
Surg 1981;51:292–295.
173 Halstead SB: Cause of primary bladder stone in England – A retrospective epidemiological study;
in Smith LH, Robertson WG, Finlayson B (eds): Urolithiasis: Clinical and Basic Research. New
York, Plenum Press, 1981, pp 325–328.
174 Teotia M, Teotia SPS: Kidney and bladder stones in India. Postgrad Med J 1977;53:41–51.
175 Herms DA, Mattson WJ: The dilemma of plants: To grow or defend. Quart Rev Biol 1992;67:
176 Milton K: Primate diets and gut morphology: Implications for hominid evolution; in Harris M,
Ross EB (eds): Food and Evolution. Philadelphia, Temple University Press, 1987, pp 93–115.
177 Lorenz K, Hengtrakul P: Alkylresorcinols in cereal grains – Nutritional importance and methods
of analysis. Food Sci Technol 1990;23:208–215.
178 Garcia S, Garcia C, Heinzen H, Moyna P: Chemical basis of the resistance of barley seeds to
pathogenic fungi. Phytochemistry 1997;44:415–418.
179 Sedlet K, Mathias M, Lorenz K: Growth depressing eects of 5-n-pentadecylresorcinol: A model
for cereal alkylresorcinols. Cereal Chem 1984;61:239–241.
180 Hengtrakul P, Mathias M, Lorenz K: Eects of cereal alkylresorcinols on human platelet thrombox-
ane production. J Nutr Biochem 1991;2:20–24.
181 Gasiorowski K, Szyba K, Brokos B, Kozubek A: Antimutagenic activity of alkylresorcinols from
cereal grains. Cancer Lett 1996;106:109–115.
182 Kozubek A, Nienartowicz B: Cereal grain resorcinolic lipids inhibit H
-induced peroxidation of
biological membranes. Acta Biochim Pol 1995;42:309–315.
183 Buonocore V, Petrucci T, Silano V: Wheat protein inhibitors of alpha-amylase. Phytochemistry
184 Feng GH, Richardson M, Chen MS, Kramer KJ, Morgan TD, Reeck GR: Alpha-amylase inhibitors
from wheat: Amino acid sequences and patterns of inhibition of insect and human alpha amylases.
Insect Biochem Mol Biol 1996;26:419–426.
185 Buonocore V, Silano V: Biochemical, nutritional and toxicological aspects of alpha-amylase inhib-
itors from plant foods. Adv Exp Med Biol 1986;199:483–507.
186 Choudhury A, Maeda K, Murayama R, DiMagno EP: Character of a wheat amylase inhibitor
preparation and eects on fasting human pancreaticobiliarysecretions and hor mones. Gastroenterol-
ogy 1996;111:1313–1320.
187 Puls W, Keup U: Influence of an amylase inhibitor (BAY d 7791) on blood glucose, serum insulin
and NEFA in starch loading tests in rats, dogs and man. Diabetologia 1973;9:97–101.
188 Hollenbeck CB, Coulston AM, Quan R, Becker TR, Vreman HJ, Stevenson DK, Reaven GM:
Eect of a commercial starch blocker preparation on carbohydrate digestion and absorption: In
vivo and in vitro studies. Am J Clin Nutr 1983;38:498–503.
189 Carlson GL, Li BU, Bass P, Olsen WA: A bean alpha-amylase inhibitor formulation (starch blocker)
is ineective in man. Science 1983;219:393–395.
190 Layer P, Carlson GL, DiMagno EP: Partially purified white bean amylase inhibitor reduces starch
digestion in vitro and inactivates intraduodenal amylase in humans. Gastroenterology 1985;88:
191 Layer P, Zinsmeister AR, DiMagno EP: Eects of decreasing intraluminal amylase activity on
starch digestion and postprandial gastrointestinal function in humans. Gastroenterology 1986;91:
192 Macri A, Parlamenti R, Silano V, Valfre F: Adaptation of the domestic chicken, Gallus domesticus,to
continuous feeding of albumin amylaseinhibitors from wheat flour as gastro-resistant microgranules.
Poultry Sci 1977;56:434–441.
193 Folsch UR, Creutzfeldt W: Adaptation of the pancreas during treatment with enzyme inhibitors
in rats and man. Scand J Gastroenterology 1985;112(suppl):54–63.
194 Sanchez-Monge R, Gomez L, Barber D, Lopez-Otin C, Armentia A, Salcedo G: Wheat and barley
allergens associated with baker’s asthma. Biochem J 1992;281:401–405.
195 Franken J, Stephan U, Meyer HE, Konig W: Identification of alpha-amylase inhibitor as a major
allergen of wheat flour. Int Arch Allergy Immunol 1994;104:171–174.
196 James JM, Sixbey JP, Helm RM, Bannon GA, Burks AW: Wheat alpha-amylase inhibitor: A second
route of allergic sensitization. J Allergy Clin Immunol 1997;99:239–244.
67Cereal Grains: Humanity’s Double-Edged Sword
197 Liener IE: Trypsin inhibitors: Concern for human nutrition or not? J Nutr 1986;116:920–923.
198 Liddle RH, Goldfine ID, Williams JA: Bioassay of plasma cholecystokinin in rats: Eects of food,
trypsin inhibitor and alcohol. Gastroenterology 1984;87:542–549.
199 McGuiness EE, Morgan RGH, Wormsley KG: Eects of soybean flour on the pancreas of rats.
Environ Health Perspect 1984;56:205–212.
200 Liener IE, Goodale RL, Deshmukh A, Satterberg TL, et al: Eect of a trypsin inhibitor from
soybeans (Bowman-Birk) on the secretory activity of the human pancreas. Gastroenterology 1988;
201 Liener IE, Kakade ML: Protease inhibitors; in Liener IE (ed): ToxicConstituents of Plant Foodstus.
New York, Academic Press, 1980, pp 7–71.
202 Mossor G, Skupin J: Some biochemical properties of trypsin inhibitor type antinutrients derived
from extracts of wheat grain, Beta variety. Nahrung 1985;29:491–500.
203 Sosulski FW, Minja LA, Christensen DA: Trypsin inhibitors and nutritive value in cereals. Plant
Foods Hum Nutr 1988;38:23–34.
204 Kennedy AR: Prevention of carcinogenesis by protease inhibitors. Cancer Res 1994;54(7 suppl):
205 Pusztai A: Plant Lectins. Cambridge, Cambridge University Press, 1991.
206 Liener IE: Nutritional significance of lectins in the diet; in Liener IE, Sharon N, Goldstein IJ (eds):
The Lectins: Properties, Functions and Applications in Biology and Medicine. Orlando, Academic
Press, 1986, pp 527–552.
207 Tsuda M: Purification and characterization of a lectin from rice bran. J Biochem 1979;86:1451–1461.
208 Rehmani SF, Spradbrow PB: The contribution of lectins to the interaction between oral Newcastle
disease vaccine and grains. Vet Microbiol 1995;46:55–62.
209 Peumans WJ, Cammue BPA: Gramineae lectins: A special class of plant lectins; in Bog-Hansen
TC, van Driasshe E (eds): Lectins – Biology, Biochemistry, Clinical Biochemistry. Berlin, Walter
de Gruyter, 1986, vol 5, pp 31–37.
210 Freed DLJ: Lectins in food: Their importance in health and disease. J Nutr Med 1991;2:45–64.
211 Pusztai A, Ewen SWB, Grant G, Brown DS, Stewart JC, Peumans WJ, Van Damme EJM, Bardocz
S: Antinutritive eects of wheat-germ agglutinin and other N-acetylglucosamine-specific lectins. Br
J Nutr 1993;70:313–321.
212 Brady PG, Vannier AM, Banwell JG: Identification of the dietary lectin, wheat germ agglutinin,
in human intestinal contents. Gastroenterology 1978;75:236–239.
213 Pusztai A: Dietary lectins are metabolic signals for the gut and modulate immune and hormone
functions. Eur J Clin Nutr 1993;47:691–699.
214 Doherty M, Barry RE: Gluten-induced mucosal changes in subjects without overt small-bowel
disease. Lancet 1981;i:517–520.
215 Husby S, Jensenius JC, Svehag SE: Passage of undegraded dietary antigen into the blood of healthy
adults. Scand J Immunol 1985;22:83–92.
216 Pusztai A: Transport of proteins through the membranes of the adult gastrointestinal tract: A po-
tential for drug delivery? Adv Drug Deliv Rev 1989;3:215–228.
217 Sjolander A, Magnusson KE, Latkovic S: The eect of concanavalin A and wheat germ agglutinin
on the ultrastructure and permeability of rat intestine. Int Archs Allergy Appl Immun 1984;75:
218 Tchernychev B, Wilchek M: Natural human antibodies to dietary lectins. FEBS Lett 1996;397:
219 Falth-Magnusson K, Magnusson K-E: Elevated levels of serum antibodies to the lectin wheat germ
agglutinin in celiac children lend support to the gluten-lectin theory of celiac disease. Pediatr Allergy
Immunol 1995;6:98–102.
220 Ponzio G, Debant A, Contreres JO, Rossi B: Wheat-germ agglutinin mimics metabolic eects of
insulin without increasing receptor autophosphorylation. Cell Signal 1990;2:377–386.
221 Shechter Y: Bound lectins that mimic insulin produce persistent insulin-like activities. Endocrinology
222 Kaplowitz PB: Wheat germ agglutinin and concanavalin A inhibit the response of human fibroblast
to peptide growth factors by a post-receptor mechanism. J Cell Physiol 1985;124:474–480.
223 Kaplowitz PB, Haar JL: Antimitogenic actions of lectins in cultured human fibroblasts. J Cell
Physiol 1988;136:13–22.
224 Hashimoto S, Hagino A: Wheat germ agglutinin, concanavalin A, and lens culinalis agglutinin
block the inhibitory eect of nerve growth factor on cell-free phosphorylation of Nsp100 in PC12h
cells. Cell Struct Funct 1989;14:87–93.
225 Cacciari E, Salardi S, Lazzari R, et al: Short stature and celiac disease: A relationship to consider
even in patients with no gastrointestinal tract symptoms. J Pediatr 1983;103:708–711.
226 Federico G, Favilli T, Cinquanta L, Ughi C, Saggese G: Eect of celiac disease and gluten-free diet
on growth hormone-binding protein, insulin-like growth factor-I, and insulin-like growth factor-
binding proteins. Horm Res 1997;48:108–114.
227 Weile B, KrasilnikoPA, Giwercman A, Skakkeback NE: Insulin-like growth factor-I in celiac
disease. J Pediatr Gastroenterol Nutr 1994;19:391–393.
228 Hernandez M, Argente J, Navarro A, Caballo N, Barrios V, Hervas F, Polanco I: Growth in
malnutrition related to gastrointestinal diseases: Coeliac disease. Horm Res 1992;38(suppl 1):79–84.
229 Dalton TA, Bennett JC: Autoimmune disease and the major histocompatibilitycomplex: Therapeutic
implications. Am J Med 1992;92:183–188.
230 O’Farrelly C, Gallagher RB: Intestinal gluten sensitivity: Snapshots of an unusual autoimmune-
like disease. Immunology Today 1992;13:474–476.
231 Andersson H, Mobacken H: Dietary treatment of dermatitis herpetiformis. Eur J Clin Nutr 1992;
232 Oldstone MBA: Molecular mimicry and autoimmune disease. Cell 1987;50:819–820.
233 von Herrath MG, Oldstone MBA: Role of viruses in the loss of tolerance to self-antigens and in
autoimmune diseases. Trends Microbiol 1995;3:424–430.
234 Clevers HC, De Bresser A, Kleinveld H, Gmelig-Meyling FHJ, Ballieux RE: Wheat germ agglutinin
activates human T lymphocytes by stimulation of phosphoinositide hydrolysis. J Immunol 1986;
235 Mothes T, Bendix U, Pfannschmidt C, Lehmann I: Eect of gliadin and other food peptides on
expression of MHC class II molecules by HT-29 cells. Gut 1995;36:548–552.
236 Baum H, Butler P, Davies H, Sternberg MJE, Burroughs AK: Autoimmune disease and molecular
mimicry: An hypothesis. Trends Biochem Sci 1993;18:140–144.
237 Weetman AP, Volkman DJ, Burman KD, Gerrard TL, Fauci AS: The in vitro regulation of human
thyrocyte HLA-DR antigen expression. J Clin Endocrinol Metab 1985;61:817–824.
238 Piccinini LA, Mackenzie WA, Platzer M, Davies TF: Lymphokine regulation of HLA-DR gene
expression in human thyroid cell monolayers. J Clin Endocrinol Metab 1987;64:543–548.
239 Lowes JR, Radwan P, Priddle JD, Jewell DP: Characterisation and quantification of mucosal
cytokine that induces epithelial histocompatibility locus antigen-DR expression in inflammatory
bowel disease. Gut 1992;33:315–319.
240 Amore A, Emancipator SN, Roccatello D, et al: Functional consequences of the binding of gliadin
to cultured rat mesangial cells: Bridging immunoglobulin A to cells and modulation of eicosanoid
synthesis and altered cytokine production. Am J Kidney Dis 1994;23:290–301.
241 Udey MC, Chaplin DD, Wedner HJ, Parker CW: Early activation events in lectin stimulated human
lymphocytes: Evidence that wheat germ agglutinin and mitogenic lectins cause similar early changes
in lymphocyte metabolism. J Immunol 1980;125:1544–1550.
242 von Herrath MG, Evans CF, Horwitz MS, Oldstone MB: Using transgenic mouse models to dissect
the pathogenesis of virus-induced autoimmune disorders of the islets of Langerhans and the central
nervous system. Immunol Rev 1996;152:111–143.
243 Cavallo MG, Fava D, Monetini L, Barone F, Pozzilli P: Cell-mediated immune response to B casein
in recent-onset insulin-dependent diabetes: Implications for disease pathogenesis. Lancet 1996;348:
244 Ostenstad B, Dybwad A, Lea T, Forre O, Vinje O, Sioud M: Evidence for monoclonal expansion
of synovial T cells bearing V alpha 2.1/V beta 5.5 gene segments and recognizing a synthetic peptide
that shares homology with a number of putative autoantigens. Immunol 1995;86:168–175.
245 Karska K, Tuckova L, Steiner L, Tlaskalova-Hogenova H, Michalak M: Calreticulin – The potential
autoantigen in celiac disease. Biochem Biophys Res Commun 1995;209:597–605.
69Cereal Grains: Humanity’s Double-Edged Sword
246 Laurie GW, Ciclitira PJ, Ellis HJ, Pogany G: Immunological and partial sequence identity of mouse
BM180 with wheat alpha gliadin. Biochem Biophys Res Commun 1995;217:10–15.
247 Quaratino S, Thorpe CJ, Travers PJ, Londei M: Similar antigenic surfaces, rather than sequence
homology, dictate T-cell epitope molecular mimicry. Proc Natl Acad Sci 1995;92:10398–10402.
248 Van Rood JJ, Van HooJP, Keuning JJ: Disease predisposition, immune responsiveness and the
fine structure of the HL-A supergene: A need for a reappraisal. Transplant Rev 1975;22:75–104.
249 Simoons FJ: Celiac disease as a geographic problem; in Walcher DN, Kretchmer N (eds): Food,
Nutrition and Evolution. New York, Masson Publishing, 1981, pp 179–199.
250 McNicholl B, Egan-Mitchell B, Stevens FM, Phelan JJ, McKenna R, Fottrell PF, McCarthy CF:
History, genetics and natural history of celiac disease – Gluten enteropathy; in Walcher DN,
Kretchmer N (eds): Food, Nutrition and Evolution. New York, Masson Publishing, 1981,
pp 169–177.
251 Collin P, Maki M: Associated disorders in coeliac disease: Clinical aspects. Scand J Gastroenterol
252 Sategna-Guidetti C, Brosso S, Pulitano R, Benaduce E, Dani F, Carta Q: Celiac disease and insulin-
dependent diabetes mellitus: Screening in an adult population. Digest Dis Sci 1994;39:1633–1637.
253 Stenhammar L, Stromberg L, Falth-Magnusson K, Lidvigsson J: Celiac disease and diabetes mellitus.
Ann Allergy 1993;71:80.
254 Green A, Gale EAM, Patterson CC: Incidence of childhood-onset insulin-dependent diabetes mel-
litus: The Eurodiab ace study. Lancet 1992;339:905–909.
255 Scott FW, Daneman D, Martin JM: Evidence for a critical role of diet in the development of
insulin-dependent diabetes mellitus. Diabetes Res 1988;7:153–157.
256 Marsh MN: Gluten, major histocompatibility complex, and the small intestine. Gastroenterology
257 Ascher H, Kristiansson B: The highest incidence of celiac disease in Europe: The Swedish experience.
J Pediatr Gastroenterol 1997;24:S3–S6.
258 Marsh MN: Transglutaminase, gluten and celiac disease: Food for thought. Nature Med 1997;3:
259 Howdle PD, Blair GE: Molecular biology and coeliac disease. Gut 1992;33:573–575.
260 KagnoMF, Paterson YJ, Kumar PJ, Kasarda DD, Carbone FR, Unsworth DJ, Austin RK:
Evidence for the role of a human intestinal adenovirus in the pathogenesis of coeliac disease. Gut
261 Baum H, Staines NA: MHC-derived peptides and the CD4+T-cell repertoire: Implications for
autoimmune disease. Cytokines Cell Mol Ther 1997;3:115–125.
262 Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, Schuppan D: Identification of
tissue transglutaminase as the autoantigen of celiac disease. Nature Med 1997;3:797–801.
263 Tuckova L, Tlaskalova-Hogenova H, Farre MA, Karska K, Rossmann P, Kolinska J, Kocna P:
Molecular mimicry as a possible cause of autoimmune reactions in celiac disease? Antibodies to
gliadin cross-react with epitopes on enterocytes. Clin Immunol 1995;74:170–176.
264 Kasarda DD: Toxic proteins and peptides in celiac disease: Relations to cereal genetics; in Walcher
DN, Kretchmer N (eds): Food, Nutrition and Evolution. New York, Masson Publishing, 1981,
pp 201–216.
265 Saltzman JR, Cliord BD: Identification of the triggers of celiac sprue. Nutr Rev 1994;52:317–319.
266 Zhu J, Newkirk MM: Viral induction of the human autoantigen calreticulin. Clin Invest Med 1994;
267 Fry L, Seah PP, Harper PG, Hobrand AV, McMinn RHM: The small intestine in dermatitis
herpetiformis. J Clin Pathol 1974;27:817–824.
268 Bodvarsson S, Jonsdottir I, Freysdottir J, Leonard JN, Fry L, Valdimarsson H: Dermatitis herpeti-
formis – An autoimmune disease due to cross-reaction between dietary glutenin and dermal elastin?
Scand J Immunol 1993;38:546–550.
269 Atkinson MA, Maclaren NK: The pathogenesis of insulin-dependent diabetes mellitus. N Engl J
Med 1994;331:1428–1436.
270 Schatz DA, Maclaren NK: Cow’s milk and insulin-dependent diabetes mellitus. JAMA 1996;276:
271 Elliott RB, Martin JM: Dietary protein: A trigger of insulin-dependent diabetes in the BB rat?
Diabetologia 1984;26:297–299.
272 Hoorfar J, Buschard K, Dagnaes-Hansen F: Prophylactic nutritional modification of the incidence
of diabetes in autoimmune non-obese diabetic (NOD) mice. Br J Nutr 1993;69:597–607.
273 Skarstein K, Wahren M, Zaura E, Hattori M, Jonsson R: Characterization of T cell receptor
repertoire and anti-Ro/SSA autoantibodies in relation to sialadenitis of NOD mice. Autoimmunity
274 Fukazawa R, Seki T, Kamisage M, Watanabe M, Ogawa S, Yuge K, Hirayama T: A Ro/SS-A auto-
antibody positive mother’s infant revealed congenital complete atrioventricular block, followed by
insulin dependent diabetes mellitus and multiple organ failure. Acta Paediatr Jpn 1994;36:427–430.
275 Binder A, Maddison PJ, Skinner P, Kurtz A, Isenberg DA: Sjogren’s syndrome: Association with
type-1 diabetes mellitus. Br J Rheumatol 1989;28:518–520.
276 Pruijn GJ, Simons FH, van Venrooij WJ: Intracellular localization and nucleocytoplasmic transport
of Ro RNP components. Eur J Cell Biol 1997;74:123–132.
277 Lieu TS, Sontheimer RD: A subpopulation of WIL-2 cell calreticulin molecules is associated with
RO/SS-A ribonucleoprotein particles. Lupus 1997;6:40–47.
278 Sumida T, Matsumoto I, Namekawa T, Kita Y: Molecular mechanism on Sjogren’s syndrome.
Nippon Rinsho 1995;53:2395–2400.
279 Teppo AM, Maury CPJ: Antibodies to gliadin, gluten and reticulin glycoprotein in rheumatic
diseases: Elevated levels in Sjogren’s syndrome. Clin Exp Immunol 1984;57:73–78.
280 Collin P, Reunala T, Pukkala E, Laippala P, Keyrilainen O, PasternackA: Coeliac disease: Associated
diseases and survival. Gut 1994;35:1215–1218.
281 Lepore L, Martelossi S, Pennesi M, et al: Prevalence of celiac disease in patients with juvenile
arthritis. J Pediatr 1996;129:311–313.
282 O’Farrelly C, Melcher D, Price R, et al: Association between villous atrophy in rheumatoid arthritis
and a rheumatoid factor and gliadin-specific IgG. Lancet 1988;ii:819–822.
283 Lepore L, Pennesi M, Ventura A, et al: Anti-alpha-gliadin antibodies are not predictive of coeliac
disease in juvenile chronic arthritis. Acta Paediatr 1993;82:569–573.
284 Bourne JT, Kumar P, Huskison EC, Maged R, Unsworth DJ, Wojtulewski JA: Arthritis and coeliac
disease. Ann Rheum Dis 1985;44:592–594.
285 Charkravarty K, Scott DGI: Oligoarthritis – A presenting feature of occult coeliac disease. Br J
Rheumatol 1992;31:349–350.
286 Shatin R: Preliminary report of the treatment of rheumatoid arthritis with high protein gluten-free
diet and supplements. Med J Aust 1964;2:169–172.
287 Williams R: Rheumatoid arthritis and food: A case study. Br Med J 1981;283:563.
288 Beri D, Malaviya AN, Shandilya R, Singh RR: Eect of dietary restrictions on disease activity in
rheumatoid arthritis. Ann Rheum Dis 1988;47:69–77.
289 Lunardi C, Bambara LM, Biasi D, Venturini G, Nicholis F, Pachor ML, DeSandre G: Food allergy
and rheumatoid arthritis. Clin Exp Rheumatol 1988;6:423–426.
290 Kjeldsen-Kragh J, Haugen M, Borchgrevink CF, Laerum E, Eek M, Mowinkel P, Hovi K, Forre
O: Controlled trial of fasting and one-year vegetarian diet in rheumatoid arthritis. Lancet 1991;
291 Perez-Maceda B, Lopez-Bote JP, Langa C, Bernabeu C: Antibodies to dietary antigens in rheumatoid
arthritis – Possible molecular mimicry mechanism. Clin Chim Acta 1991;203:153–165.
292 Ostenstad B, Dybwad A, Lea T, Forre O, Vinje O, Sioud M: Evidence for monoclonal expansion
of synovial T cells bearing the V alpha 2.1/V beta 5.5 gene segments and recognizing a synthetic
peptide that shares homology with a number of putative autoantigens. Immunology 1995;86:168–
293 Routsias JG, Tzioufas AG, Sakarellos-Daitsiotis M, Sakarellos C, Moutsopoulos HM: Calreticulin
synthetic peptide analogues: Anti-peptide antibodies in autoimmune rheumatic diseases. Clin Exp
Immunol 1993;91:437–441.
294 Verreck FA, Elferink D, Vermeulen CJ, Amons R, Breedveld F, de Vries RR, Koning F: DR4Dw4/
DR53 molecules contain a peptide from the autoantigen calreticulin. Tissue Antigens 1995;45:
71Cereal Grains: Humanity’s Double-Edged Sword
295 Montinaro V, Gesualdo L, Schena FP: Primary IgA nephropathy: The relevance of experimental
models in the understanding of human disease. Nephron 1992;62:373–381.
296 Kovacs T, Mette H, Per B, Kun L, Schmelczer M, Barta J, Jean-Claude D, Nagy J: Relationship
between intestinal permeability and antibodies against food antigens in IgA nephropathy. Orv Hetil
297 Coppo R, Amore A, Roccatello D: Dietary antigens and primary immunologlobulin A nephropathy.
J Am Soc Nephrol 1992;2:S173–S180.
298 Libetta C, Rampino T, Palumbo G, Esposito C, Dal Canton A: Circulating serum lectins of patients
with IgA nephropathy stimulate IL-6 release from mesangial cells. J Am Soc Nephrol 1997;8:208–213.
299 Coppo R, Mazzucco G, Martina G, Roccatello D, Amore A, Novara R, Bargoni A, Piccoli G,
Sena LM: Gluten-induced experimental IgA glomerulopathy. Lab Invest 1989;60:499–506.
300 Coppo R, Roccatello D, Amore A, Quattrocchio G, Molino A, Gianoglio B, Amorosso A, Bajardi
P, Piccoli G: Eects of a gluten-free diet in primary IgA nephropathy. Clin Nephrol 1990;33:72–86.
301 Carrozzo M, Carbone M, Gandolfo S: Recurrent aphthous stomatitis: Current etiopathogenetic
and therapeutic concepts. Minerva Stomatol 1995;44:467–475.
302 O’Farrelly C, O’Mahony C, Graeme-Cook F, Feighery C, McCartan BE, Weir DG: Gliadin anti-
bodies identify gluten-sensitive oral ulceration in the absence of villous atrophy. J Oral Pathol Med
303 Wray D: Gluten-sensitive recurrent aphthous stomatitis. Dig Dis Sci 1981;26:737–740.
304 Walker DM: Eect of a gluten free diet on recurrent aphthous ulceration. Br J Dermatol 1980;
305 Wucherpfennig KW, Strominger JL: Molecular mimicry in T cell-mediated autoimmunity: Viral
peptides activate human T cell clones specific for myelin basic protein. Cell 1995;80:695–705.
306 Hartung HP, Rieckmann P: Pathogenesis of immune-mediated demyelination in the CNS. J Neural
Trans 1997;50(suppl):173–181.
307 Shatin R: Multiple sclerosis and geography. Neurology 1964;14:338–344.
308 Malosse D, Perron H, Sasco A, Seigneurin JM: Correlationbetween milk and dairy product consump-
tion and multiple sclerosis prevalence: A worldwide study. Neuroepidemiology 1992;11:304–312.
309 Matthews WB, Compston A, Allen IV, Martyn CN: McAlpine’s Multiple Sclerosis, ed 2. Edinburgh,
Churchill-Livingstone, 1991, pp 3–40.
310 Macdougall R: No bed of roses. World Med 1973;8:98–99.
311 Matheson NA: Multiple sclerosis and diet. Lancet 1974;ii:831.
312 Hunt BS: Diet and multiple sclerosis. Lancet 1974;ii:1204.
313 Lange LS, Shiner M: Small-bowel abnormalities in multiple sclerosis. Lancet 1976;ii:1319–1322.
314 Gupta JK, Ingegno AP, Cook AW, Pertschuk LP: Multiple sclerosis and malabsorption. Am J
Gastroenterol 1977;68:560–565.
315 Hadjivassiliou M, Gibson A, Davies-Jones GAB, Lobo AJ, Stephenson TJ, Milford-Ward A: Does
cryptic gluten sensitivity play a part in neurological illness? Lancet 1996;347:369–371.
316 Jellinek EH: Multiple sclerosis and diet. Lancet 1974;ii:1006–1007.
317 Bateson MC, Hopwood D, MacGillivray JB: Jejunal morphology in multiple sclerosis. Lancet 1979;
318 Auricchio S: Gluten sensitivity and neurological illness. J Pediatr Gastroenterol Nutr 1997;25:S7–S8.
319 Ferroir JP, Fenelon G, Billy C, Huon R, Herry JP: Epilepsy, cerebral calcifications and celiac disease.
Rev Neurol (Paris) 1997;153:354–356.
320 Gobbi G, Ambrosetto P, Zaniboni MG, Lambertini A, Ambrosioni G, Tassinari CA: Celiac disease,
posterior cerebral calcifications and epilepsy. Brain Dev 1992;14:23–29.
321 Gobbi G, Bouquet F, Greco L, Lambertini A, Tassinari CA, Ventura A, Zaniboni MG: Coeliac
disease, epilepsy, and cerebral calcifications: The Italian working group on coeliac disease and
epilepsy. Lancet 1992;340:439–443.
322 Fois A, Vascotto M, DiBartolo RM, Di Marco V: Celiac disease and epilepsy in pediatric patients.
Childs Nerv Syst 1994;10:450–454.
323 Warren RP, Odell JD, Warren WL, Burger RA, Maciulis A, Daniels WW, Torres AR: Strong
association of the third hypervariable region of HLA-DR beta 1 with autism. J Neuroimmunol
324 Singh VK, Warren RP, O’Dell JD, Warren WL, Cole P: Antibodies to myelin basic protein in
children with autistic behavior. Brain Behav Immun 1993;7:97–103.
325 Reichelt KL, Ekrem J, Scott H: Gluten, milk proteins and autism: Dietary intervention eects on
behavior and peptide secretion. J Appl Nutr 1990;42:1–11.
326 Sponheim E: Gluten-free diet in infantile autism: A therapeutic trial. Tidsskr Nor Laegeforen 1991;
327 Dohan FC: Wheat consumption and hospital admissions for schizophrenia during World War II.
Am J Clin Nutr 1966;18:7–10.
328 Dohan FC: Genetic hypothesis of idiopathic schizophrenia: Its exorphin connection. Schizophr
Bull 1988;14:489–494.
329 Lorenz K: Cereals and schizophrenia. Adv Cereal Sci Technol 1990;10:435–469.
330 Dohan FC, Grasberger JC, Lowell FM, Johnston HT, Arbegast AW: Relapsed schizophrenics:
More rapid improvement on a milk and cereal free diet. Br J Psychiatry 1969;115:595–596.
331 Dohan FC, Grasberger JC: Relapsed schizophrenics: Early discharge from the hospital after cereal-
free, milk free diet. Am J Psychiatry 1973;130:685–688.
332 Singh MM, Kay SR: Wheat gluten as a pathogenic factor in schizophrenia. Science 1976;191:
333 Reichelt KL, Landmark J: Specific IgA antibody increases in schizophrenia. Biol Psychiatry 1995;
334 Ganguli R, Brar JS, Cehngappa KN, Yang ZW, Nimgaonkar VL, Rabin BS: Autoimmunity in
schizophrenia: A review of recent findings. Ann Med 1993;25:489–496.
335 Noy S, Achiron A, Laor N: Schizophrenia and autoimmunity – A possible etiological mechanism?
Neuropsychobiology 1994;30:157–159.
336 Ziadrou C, Streaty RA, Klee WA: Opioid peptides derived from food proteins. J Biol Chem 1979;
337 Huebner FR, Lieberman KW, Rubino RP, Wall JS: Demonstration of high opioid-like activity in
isolated peptides from wheat gluten hydrolysates. Peptides 1984;5:1139–1147.
338 Fukudome S, Yoshikawa M: Opioid peptides derived from wheat gluten: Their isolation and charac-
terization. FEBS Lett 1992;296:107–111.
339 Fukudome S, Yoshikawa M: A novel peptide derived from wheat gluten. FEBS Lett 1993;316:
340 Fukudome S, Jinsmaa Y, Matsukawa T, Sasaki R, Yoshikawa M: Release of opioid peptides, gluten
exorphins by the action of pancreatic elastase. FEBS Lett 1997;412:475–479.
341 Shatin R: Man and his cultigens. Sci Australian 1964;1:34–39.
342 Shatin R: The transition from food-gatheringto food-production in evolution and disease. Vitalstoe
Zivilisationskrankheiten 1967;12:104–107.
Loren Cordain, PhD, Department of Exercise and Sport Science, Colorado State University,
Fort Collins, CO 80523 (USA)
Tel. +1 970 491 7436
73Cereal Grains: Humanity’s Double-Edged Sword
... The contrast between rural and industrialised populations is particularly pronounced at older ages. Less than 30% of hunter-gatherers and subsistence farmers in the US who are 60 years or older have even moderate hypertension, compared to more than 60% of hypertensive US individuals [203,204]. According to Trøseid et al. [205], interactions between nutrition and the gut microbiota may have a combined or independent effect on atherosclerosis, acute coronary syndromes, and heart failure. ...
... Because of its extraordinary plasticity, GM may change its composition and adapt to diet/food availability, and the evolution of agricultural societies may have promoted the creation of microbial communities capable of digesting complex substrates such as polysaccharides [111]. Indeed, agricultural communities derive the majority of their daily energy from a single cooked cereal grain [203]. In this sense, the selection forces to which Homo sapiens were subjected, particularly those linked with the dietary environment, including those caused by microbiota, may have been substantially changed. ...
Full-text available
Food, a vital component of our daily life, is fundamental to our health and well-being, and the knowledge and practices relating to food have been passed down from countless generations of ancestors. Systems may be used to describe this extremely extensive and varied body of agricultural and gastronomic knowledge that has been gathered via evolutionary processes. The gut microbiota also underwent changes as the food system did, and these alterations had a variety of effects on human health. In recent decades, the gut microbiome has gained attention due to its health benefits as well as its pathological effects on human health. Many studies have shown that a person’s gut microbiota partially determines the nutritional value of food and that diet, in turn, shapes both the microbiota and the microbiome. The current narrative review aims to explain how changes in the food system over time affect the makeup and evolution of the gut microbiota, advancing obesity, cardiovascular disease (CVD), and cancer. After a brief discussion of the food system’s variety and the gut microbiota’s functions, we concentrate on the relationship between the evolution of food system transformation and gut microbiota system transition linked to the increase of non-communicable diseases (NCDs). Finally, we also describe sustainable food system transformation strategies to ensure healthy microbiota composition recovery and maintain the host gut barrier and immune functions to reverse advancing NCDs.
... This logically entails the exclusion of certain foods that would not have been available to preagricultural humans, in particular industrially processed foods, grains, legumes, and dairy. In his scientific publications, Cordain [2,3] pointed out the putative health benefits that may result from eliminating these food groups. The exclusion of industrially processed foods, grains, and legumes (but not necessarily dairy products) is also the hallmark of a set of other diets, which are motivated by an evolutionary perspective on diet and health, including carnivore diets and Paleolithic ketogenic diets, such as Voegtlin's [4] "Stone Age Diet". ...
... The rise of the paleo diet and gluten intolerances has resulted in cereals being considered unnecessary, and even incompatible, for optimum human health (Zopf et al., 2018); the paleo diet in particular considers grains to have only become an important part of the human diet some 10,000 years ago (Cordain, 1999). However, research out of Mozambique, Africa has shown starch grains from wild sorghum (Sorghum spp.) on stone tools dating back 105,000 years, strongly suggesting cereals have been an important part of modern human diets for a significant amount of time (Mercader, 2009). ...
Full-text available
First Nations people of Australia sustained complex grassland grain production systems prior to colonisation. The revival of these foodways could aid in mitigating the interlinked issues of land degradation, reduced landscape resilience and declining food security. For the Gamilaraay people, original custodians of the grasslands of north-west New South Wales and south-west Queensland, efforts are underway to bring their ancient food system into a modern context with authenticity and integrity. The aim of this transdisciplinary study was to investigate the nutritional quality of Australian native grains to identify functional properties that may help promote this nascent industry; complimented by using autoethnography to understand how the original custodians, like the Gamilaraay people, might equitably benefit. Ethnographic findings highlight that Gamilaraay people aspire to improve their health and wellbeing through economic development and consumption of native grains, particularly Elders who disproportionately suffer from non-communicable disease. However, many First Nations people have lived experiences of being systemically exploited and excluded, particularly in the food and agriculture space. To prioritise the interests of the Traditional Custodians, the species used in the biochemical assays were de-identified. Wholegrains from seven culturally significant species, with domesticated brown rice as control, were threshed, milled, and analysed in triplicate for proximate, elemental, non-starch fatty acids, and total free phenolic content. Compared to brown rice, protein was significantly higher in all native species (9.4–32.6 g/100 g); whilst carbohydrates were significantly lower (36.5–53.7 g/100 g). One of the native species had exceptionally high total phenolics (569 mg GAE/100 g) compared to brown rice (60 mg GAE/100 g). All native species had generally higher elemental content, with significantly higher levels of Ca, Fe, Zn, Cu, Mg, P, and K in two native species. All samples were dominated by unsaturated fats with significantly higher polyunsaturated fats in two native species. The generally low carbohydrates, high protein, good fats, high mineral content and high phenolic content suggests that native grains may be beneficial to human health by improving nutrient intake and protecting against non-communicable disease, thus marketable as functional foods. To ensure a flourishing industry where all of Australia benefits from these healthful grains, future research and industry development must be First Nations led.
... According to the World Food and Agriculture Organization's statistics, global cereal production in 2021/2022 has been estimated at 2815 million tonnes. 1 Globally, rice, maize, and wheat are the three most important cereal crops, which together comprise at least 75% of grain production. 2 However, the utilization pattern of these cereal grains differs between developed and developing countries. In the former, more than 70% of total cereal production is fed to animals, whereas in the latter, almost all cereal production is used for human consumption. ...
In recent years, consumers have been concentrating on the health benefits and nutrition from food to preserve a healthy lifestyle. They are looking for colorants derived from natural sources to enhance the nutritional and antioxidant value of foods. Coloured cereals (wheat, rice, barley, oat, maize, sorghum, and millets) contain many phytochemicals, including anthocyanins and carotenoids associated with numerous health benefits. This book presents a comprehensive overview of the bioactive potential, food applications, and health benefits of coloured cereal grains. Novel approaches to the integration of coloured grain into food in the food processing industries are included, reviewing high-value pigments in the bran layer which can easily be extracted and utilized as functional foods and natural colorants. Aimed at researchers carrying out innovative studies, food regulatory and safety authorities and food processing industries who are trying to minimize synthetic food colorants and dyes, this book provides a novel approach to the use of substitute synthetic dyes which can improve the nutritional value, appearance, texture, flavour, and storage properties of food products.
... Fibre is suggested to reduce BC risk through effects on the discharge of carcinogens in the gut, promotion of probiotics, absorption of free oestrogen, and beneficial effects on insulin resistance [49][50][51]. Third, the removal of grains from the diet is postulated to reduce inflammation and benefit hormone levels [52,53]. Fourth, the PD limits non-lean red and processed meat linked to oxidative stress and systemic inflammation [54][55][56], also suggested by lower levels of inflammatory biomarkers in an observational study [35]. ...
Full-text available
Background The Palaeolithic diet (PD) has gained popularity globally. There is emerging evidence of its putative health benefits as short-term effects on chronic diseases have been reported. We evaluated the association between long-term adherence to the PD and breast cancer (BC) risk among postmenopausal women. Methods 65,574 women from the Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l’Education Nationale (E3N) cohort were followed from 1993 to 2014. Incident BC cases were identified and validated. The PD score was calculated using dietary intake self-reported at baseline (1993) and follow-up (2005) or baseline only if censored before follow-up. Multivariable Cox proportional hazards regression models were used to estimate BC hazard ratios (HR) and 95% confidence intervals (CI). Results Over a mean follow-up of 20 years, 3968 incident BC cases occurred. An increase of 1 standard deviation in the PD score was associated with an 8% lower BC risk, fully-adjusted model: HR1-SD 0.92, 95% CI; 0.89, 0.95. Compared to women with low adherence to the PD, women with high adherence had a 17% lower BC risk, HRQ5 vs Q1 0.83, 95% CI; 0.75, 0.92, Ptrend < 0.01. When considering BC subtypes, we observed the same pattern of association (Pheterogeneity > 0.10 for all). Conclusions High adherence to a PD characterised by fruit, vegetables, nuts, fish, and lean meat and limited in dairy, grains, legumes, refined sugar, and alcohol was associated with a lower BC risk. The lack of heterogeneity according to BC subtypes could indicate the involvement of non-hormonal mechanisms. The protocol is registered at as NCT03285230. Registry The protocol is registered at as NCT03285230.
... Indeed, vitamin C deficiency (scurvy) was unknown in traditional populations consuming minimal amounts of carbohydrates such as the Inuit and Indigenous North Americans, indicating that animal sources of vitamin C are sufficient within the context of a low carbohydrate diet (Price, 2010). Finally, many edible plants accessible by Neanderthals contain anti-nutrients such as tannins, phytates and oxalates which bind to and directly decrease the bioavailability of micronutrients (Cordain, 1999;Gibson et al., 2018;Lindeberg, 2009;Norton, 2018). A diet low in these anti-nutrients may have increased bioavailability of animal-food-derived nutrients and resulted in good conditions for reproduction, cognitive development and physical activity despite a lack of high carbohydrate intake. ...
Full-text available
Objectives In a recent paper, Hardy et al. (2022, Journal of Human Evolution 162: 103105) claim that the physiological Neanderthal requirement for plant carbohydrates may have reached 50%–60% of caloric intake, inferred from modern dietary guidelines and a putative need for high carbohydrate intake in pregnant/breastfeeding women and athletes. The aim of this article is to critically re‐examine these arguments under the premise that hominins could adapt to hypercarnivorous diets and low carbohydrate consumption. Materials and Methods Literature on ketogenic and carnivore diets was retrieved. A case report of a male rugby player voluntarily undertaking a carnivore diet under medical supervision is presented. Results Human metabolism is highly flexible towards adapting to long‐term low carbohydrate intakes by producing and utilizing ketone bodies. The evidence base of dietary guidelines is weak, and carbohydrate intake recommendations for athletes and during pregnancy/lactation are uncertain, making a translation to Neanderthal diets questionable. The studied rugby player maintained his sports performance and health over a 4‐months period despite minimal carbohydrate intake. Discussion Human physiology appears to have an extraordinary ability to utilize ketone bodies as a fuel for the brain and skeletal muscle, in particular also during exercise. The translation of dietary guidelines to Neanderthals and interpretation of studies in subjects not adapted to ketosis may be biased by a “glucocentric” perspective supposing that high carbohydrate intake is necessary for maintaining health. Allowing for the possibility of keto‐adaption leads to a more coherent integration of archeological and physiological data.
... In retrospect, the Neolithic was an irreversible revolution that, besides with the apparent advantages (higher yields, relative independence from nature, a differentiated and dynamic social structure), also had numerous disadvantages (lack of genetic adaptation, limited mobility, health consequences, etc.) [85]. In addition to sedentariness, essential characteristics of the period were the division of labour, stockpiling, social change, and global dispersal. ...
Full-text available
Anyone who wants to understand the biological nature of humans and their special characteristics must look far back into evolutionary history. Today’s way of life is drastically different from that of our ancestors. For almost 99% of human history, gathering and hunting have been the basis of nutrition. It was not until about 12,000 years ago that humans began domesticating plants and animals. Bioarchaeologically and biochemically, this can be traced back to our earliest roots. Modern living conditions and the quality of human life are better today than ever before. However, neither physically nor psychosocially have we made this adjustment and we are paying a high health price for it. The studies presented allow us to reconstruct food supply, lifestyles, and dietary habits: from the earliest primates, through hunter-gatherers of the Paleolithic, farming communities since the beginning of the Anthropocene, to the Industrial Age and the present. The comprehensive data pool allows extraction of all findings of medical relevance. Our recent lifestyle and diet are essentially determined by our culture rather than by our millions of years of ancestry. Culture is permanently in a dominant position compared to natural evolution. Thereby culture does not form a contrast to nature but represents its result. There is no doubt that we are biologically adapted to culture, but it is questionable how much culture humans can cope with.
Special enzymes are necessary for producing gluten-free foods, and specific proteolytic enzymes with gluten-degrading activity may be used as oral treatments for celiac disease. Enzymes of the kind were sought, identified, and preliminarily characterized in two strains of the alkaliphilic microscopic fungi Sodiomyces alkalinus and S. magadiensis. Post-glutamine cleaving activity was for the first time observed in the strains along with proline-cleaving activities of dipeptidyl peptidase 4 (DPP4) and proline aminopeptidase (PAP), allowing efficient hydrolysis of both proline/glutamine-rich gluten peptides and whole gluten. The optimal pH and pH-dependent stability were determined for the peptidases in question. All of the enzymes shown to cleave the prolyne/glutamine-containing bonds were assigned to the serine peptidase group and were found to be stable in moderately acidic and alkaline conditions. Owing to their activities, the peptidases are promising as tools to produce gluten-free foods and to design diets for gluten-intolerant patients.
In five villages typical of those in southern Iran, 30% of the children, 24% of females, and 7% of the males over 16 had hemoglobin concentrations of 12 g/100 ml or less. Packed red cell volumes were correspondingly low. Iron concentrations of representative village diets averaged 98.9 ± 10.1 (se) µg/g dry diet. Iron intakes of 18 boys 13 to 14 years old in three villages averaged 44.4 ± 4.49 (se) mg/day and exceeded 18 mg/day in 16. Treatment of children and adults whose hemoglobin concentrations were below 10.5 g/100 ml or whose packed cell volume was less than 33% with 18 and 109 mg of iron (as ferrous sulfate) daily was followed by a prompt rise in both parameters. Hemoglobin concentrations remained normal or nearly so 8 months after treatment was stopped. The occurrence of iron-deficiency anemia despite high content of iron in the diet is attributed to the substantial intakes of phytate present in the unleavened wholemeal wheat bread that is the main dietary staple of the villagers.
Plasma taurine levels and urinary taurine excretion were measured in 12 strict vegetarian (vegan) males who had maintained a vegan diet for 53 +/- 26 mo (SD) and in 14 male nonvegetarian control subjects. Plasma taurine levels differed (45 +/- 7 vs 58 +/- 16 mumol/L, respectively). Urinary taurine excretion was lower (266 +/- 279 vs 903 +/- 580 mumol/d), urinary N pi-methylhistidine was barely detectable, and urinary N tau-methylhistidine was significantly reduced (296 +/- 87 vs 427 +/- 19 mumol/d) in the vegans. Analysis of 3-d dietary diaries kept by the vegans indicated marginal to adequate intake of protein, carbohydrate, vitamin B-6, methionine, and cystine; inadequate intake of zinc; and negligible intake of taurine. Prolonged absence of dietary taurine intake causes decreased plasma taurine and severely restricted urinary taurine output.
This research was conducted to determine the bioavailability of 5′-O-(β-D-glucopyranosyl) pyridoxine (PN-glucoside) during chronic administration in a depletion-repletion bioassay. PN-glucoside was found previously to constitute of major portion of the total vitamin B-6 in many foods of plant origin. Following a 14-d depletion period, rats were fed diets containing graded levels of either free pyridoxine (PN) or PN-glucoside for 17 d. Slope ratio analysis of dose-response curves, on the basis of growth and plasma pyridoxal 5-phosphate (PLP) concentration, indicated 10–34% utilization of PN-glucoside relative to the molar response to PN. Erythrocyte aspartate aminotransferase (AspAT) activity and urinary 4-pyridoxic acid concentration were lower and the stimulation of AspAT activity by exogenous PLP was greater for rats fed PN-glucoside than for those fed PN, which indicated reduced vitamin B-6 nutriture in response to PN-glucoside. A constant 7–9% of the ingested PN-glucoside was detected in urine in intact form at all dosage levels. These results provide further evidence of incomplete bioavailability of PN-glucoside and indicate that its extent of utilization is not influenced by its level of dietary intake.
The nutritional requirements of contemporary humans were almost certainly established over eons of evolutionary experience and the best available evidence indicates that this evolution occurred in a high-calcium nutritional environment. The exercise and dietary patterns of humans living at the end of the Stone Age can be considered natural paradigms: calcium intake was twice that for contemporary humans and requirements for physical exertion were also greater than at present. Bony remains from that period suggest that Stone Agers developed a greater peak bone mass and experienced less age-related bone loss than do humans in the 20th Century.