Article

Quantitative investigation of mitochondrial function in single rat hippocampal slices: A novel application of high-resolution respirometry and laser-excited fluorescence spectroscopy

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Highly sensitive techniques are needed for the quantitative determination of mitochondrial oxidative phosphorylation function in single rat hippocampal slices or isolated hippocampal subfields. We determined the oxygen consumption of single hippocampal slices or subfields applying high-resolution respirometry adapted for slice measurements and measured the redox state of mitochondrial NAD(P)H in single hippocampal slices by laser-excited fluorimetry. These methods allow the sensitive detection of two parameters of mitochondrial oxidative phosphorylation which depend on supply of substrates and respiratory chain function.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Consequently, aspects of brain injury that cannot be readily studied in cell culture (e.g., spreading depression (Dietz et al., 2009)), can be modeled in slice preparations. O 2 consumption from hippocampal slices was measured previously using O 2 electrodes (Foster et al., 2005;Huchzermeyer et al., 2008;Kudin et al., 1999;Kudin et al., 2002;Kunz et al., 1999;Nishizaki and Okada, 1988;Poli et al., 1983). However, poor sensitivity and the degree of difficulty have hindered analysis of bioenergetic parameters in intact slices compared to populations of cells or synaptosomes. ...
... Henry McIlwain performed early pioneering work on optimizing brain tissue slice preparations (Collingridge, 1995;Rodnight and McIlwain, 1954), with the goal of making metabolic measurements. Over the last several decades a number of attempts have been made to measure O 2 consumption from brain hippocampal slices, primarily using the Clark electrode (Foster et al., 2005;Huchzermeyer et al., 2008;Kudin et al., 1999;Kudin et al., 2002;Kunz et al., 1999;Nishizaki and Okada, 1988;Poli et al., 1983). However, to date, there are no techniques in widespread use. ...
... Notably, we found that exogenous pyruvate (10 mM) was able to increase O 2 consumption of organotypic mouse hippocampal slices in the presence of uncoupler, as was reported previously for neurons (Jekabsons and Nicholls, 2004), synaptosomes Kauppinen and Nicholls, 1986), and acute rat hippocampal slices (Kudin et al., 1999). This finding demonstrates the utility of microplate-based hippocampal respirometry for assessing the influence of exogenous energy substrates on mitochondrial function and confirms observations made with O 2 electrode-based technology. ...
Article
Multiple neurodegenerative disorders are associated with altered mitochondrial bioenergetics. Although mitochondrial O(2) consumption is frequently measured in isolated mitochondria, isolated synaptic nerve terminals (synaptosomes), or cultured cells, the absence of mature brain circuitry is a remaining limitation. Here we describe the development of a method that adapts the Seahorse Extracellular Flux Analyzer (XF24) for the microplate-based measurement of hippocampal slice O(2) consumption. As a first evaluation of the technique, we compared whole-slice bioenergetics with previous measurements made with synaptosomes or cultured neurons. We found that mitochondrial respiratory capacity and O(2) consumption coupled to ATP synthesis could be estimated in cultured or acute hippocampal slices with preserved neural architecture. Mouse organotypic hippocampal slices oxidizing glucose displayed mitochondrial O(2) consumption that was well coupled, as determined by the sensitivity to the ATP synthase inhibitor oligomycin. However, stimulation of respiration by uncoupler was modest (<120% of basal respiration) compared with previous measurements in cells or synaptosomes, though enhanced slightly (to ∼150% of basal respiration) by acute addition of the mitochondrial complex I-linked substrate pyruvate. These findings suggest a high basal utilization of respiratory capacity in slices and a limitation of glucose-derived substrate for maximal respiration. The improved throughput of microplate-based hippocampal respirometry over traditional O(2) electrode-based methods is conducive to neuroprotective drug screening. When coupled with cell type-specific pharmacology or genetic manipulations, the ability to measure O(2) consumption efficiently from whole slices should advance our understanding of mitochondrial roles in physiology and neuropathology.
... For high-resolution 1 H-MRS, the mice were anaesthetized with chloroform and killed by decapitation (Kudin et al., 1999). The CNS of the mice was then divided into brainstem, cerebellum, cortex and whole spinal cord in a brain medium at 0 °C (for composition, see Kudin et al., 1999) according to the segmentation scheme shown in the right part ofFig. ...
... For high-resolution 1 H-MRS, the mice were anaesthetized with chloroform and killed by decapitation (Kudin et al., 1999). The CNS of the mice was then divided into brainstem, cerebellum, cortex and whole spinal cord in a brain medium at 0 °C (for composition, see Kudin et al., 1999) according to the segmentation scheme shown in the right part ofFig. 1, and stored in liquid nitrogen until use within 5 min after death. ...
Article
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. Visualizing corresponding metabolic changes in the brain of patients with ALS with proton magnetic resonance spectroscopy ((1)H-MRS) may provide surrogate markers for an early disease detection, for monitoring the progression and for evaluating a treatment response. The primary objective of our study was to evaluate whether modifications in MR metabolite levels occur before clinical disease onset, and whether these changes are directly linked to a distinct spatial progression pattern in the CNS. Therefore, age-dependent alterations in the cerebral and spinal metabolic profile in the mouse model of ALS overexpressing the mutated human G93A-superoxide dismutase 1 (G93A-SOD1) were determined by high-resolution MRS of tissue extracts at 14.1 Tesla. Both non-transgenic mice (control mice) and transgenic mice overexpressing the non-mutated human SOD1 (tg-SOD1) served as controls. In the spinal cord of G93A-SOD1 mice significantly decreased levels of N-acetyl aspartate were already detected 34 days postpartum, i.e. about 60 days before the average disease onset caused by motor neuron decline. In addition, glutamine and gamma-aminobutyric acid concentrations were significantly diminished at Day 75, which is still in the presymptomatic phase of the disease. These metabolic changes were further progressive in the course of the disease and started to involve the brainstem at Day 75. Overall, high-resolution (1)H-MRS allows a sensitive spatial and temporal metabolite profiling in the presymptomatic phase of ALS even before significant neuronal cell loss occurs.
... The oxygen consumption of single hippocampal slices was determined at 30 • C in a medium consisting of 10 mM glucose, 125 mM NaCl, 3 mM KCl, 2 mM CaCl 2 , 1.25 mM sodium phosphate, 2 mM MgCl 2 , and 20 mM HEPES-NaOH (pH 7.4) with a PC-supported Oroboros high-resolution oxygraph (24). Mitochondria from rat brain were isolated and assayed for respiration rates, as previously described (25). ...
... First, we tested the action of TPM on oxygen consumption by 400-µm-thick hippocampal slices. The experiments were performed as described previously (24). Traces from typical experiments are shown in Fig. 1. ...
Article
For the antiepileptic drug (AED) topiramate (TPM), neuroprotective effects have been reported in models of focal cerebral ischemia and experimental status epilepticus, but the putative mechanism of action has remained elusive. We studied the effects of TPM on mitochondrial function in the pilocarpine rat model of chronic epilepsy and in isolated mitochondria from rat brain. TPM treatment in status epilepticus at doses ranging from 20 to 100 mg/kg considerably improved the survival of rats and improved CA1 and CA3 pyramidal cell survival in a dose-dependent manner. This treatment increased the activity of mitochondrial respiratory chain complex I in the CA1 and CA3 pyramidal subfields and resulted in lower seizure frequencies in chronic epileptic rats. In vitro investigations of the action of TPM on isolated rat brain mitochondria ruled out any direct effects of the drug on mitochondrial oxidative phosphorylation but revealed a protective effect on hippocampal mitochondria against an external calcium challenge. This can explain its observed neuroprotective action in the concentration range tested. The in vitro effects of TPM on the calcium handling of isolated brain mitochondria was found to be comparable to the action of cyclosporin A. The neuroprotective action of TPM seems to be directly related to its inhibitory effect on the mitochondrial permeability transition pore.
... This is in agreement with previous observations in excised sympathetic ganglia, where the total CO 2 output from the tissue was higher when both glucose and lactate were present, 60 as well as in other studies measuring brain tissue O 2 consumption rate, where lactate or pyruvate are typically added to guarantee that glycolysis does not limit the rate of oxidative phosphorylation. 32,61,62 It is also relevant to keep in mind that neurons have a limited ability to increase their glycolytic rate due to the deficient production of the potent PFK1 activator, F26BP, which is the result of constitutive degradation of PFK2/FBPase2 in these cells. 17,56 In agreement with previous studies, we observed that depolarization with high K + significantly increased hippocampal slice respiration for all substrate conditions, including low glucose (0.5 mM), [63][64][65] although synaptic function is reported to be silenced in hippocampal slices when glucose concentration is lowered below 2 mM. ...
Article
Full-text available
Under physiological conditions, the energetic demand of the brain is met by glucose oxidation. However, ample evidence suggests that lactate produced by astrocytes through aerobic glycolysis may also be an oxidative fuel, highlighting the metabolic compartmentalization between neural cells. Herein, we investigate the roles of glucose and lactate in oxidative metabolism in hippocampal slices, a model that preserves neuron-glia interactions. To this purpose, we used high-resolution respirometry to measure oxygen consumption (O2 flux) at the whole tissue level and amperometric lactate microbiosensors to evaluate the concentration dynamics of extracellular lactate. We found that lactate is produced from glucose and transported to the extracellular space by neural cells in hippocampal tissue. Under resting conditions, endogenous lactate was used by neurons to support oxidative metabolism, which was boosted by exogenously added lactate even in the presence of excess glucose. Depolarization of hippocampal tissue with high K+ significantly increased the rate of oxidative phosphorylation, which was accompanied by a transient decrease in extracellular lactate concentration. Both effects were reverted by inhibition of the neuronal lactate transporter, monocarboxylate transporters 2 (MCT2), supporting the concept of an inward flux of lactate to neurons to fuel oxidative metabolism. We conclude that astrocytes are the main source of extracellular lactate which is used by neurons to fuel oxidative metabolism, both under resting and stimulated conditions.
... By using intact hippocampal slices as opposed to isolated mitochondria or neurons/astrocytes, tissue cytoarchitecture, intercellular communication and connectivity are maintained. Oxygen consumption in hippocampal slices has been measured before [23][24][25][26][27]. Here, we present a method that allows the study of brain bioenergetics intact tissue using high-resolution respirometry. ...
... Oxygen consumption flux rates were measured polarographically using high-resolution respirometry as described (Kudin et al., 1999), with modifications, using an Oroboros Oxygraph O2K respirometer (Innsbruck, Austria). Measurements were performed in an electronically controlled thermal environment with high temperature stability (0.001°C). ...
Article
Full-text available
2,4-Dinitrophenol (DNP) is a neuroprotective compound previously shown to promote neuronal differentiation in a neuroblastoma cell line and neurite outgrowth in primary neurons. Here, we tested the hypothesis that DNP could induce neurogenesis in embryonic stem cells (ESCs). Murine ESCs, grown as embryoid bodies (EBs), were exposed to 20μM DNP (or vehicle) for 4days. Significant increases in the proportion of nestin- and β-tubulin III-positive cells were detected after EB exposure to DNP, accompanied by enhanced glial fibrillary acidic protein (GFAP), phosphorylated extracellular signal-regulated kinase (p-ERK) and ATP-linked oxygen consumption, thought to mediate DNP-induced neural differentiation. DNP further protected ESCs from cell death, as indicated by reduced caspase-3 positive cells, and increased proliferation. Cell migration from EBs was significantly higher in DNP-treated EBs, and migrating cells were positive for nestin, ß-tubulin III and MAP2, similar to that observed with retinoic acid (RA)-treated EBs. Compared to RA, however, DNP exerted a marked neuritogenic effect on differentiating ESCs, increasing the average length and number of neurites per cell. Results establish that DNP induces neural differentiation of ESCs, accompanied by cell proliferation, migration and neuritogenesis, suggesting that DNP may be a novel tool to induce neurogenesis in embryonic stem cells.
... Oxygen consumption rates were measured polarographically using high-resolution respirometry as described in Kudin et al. (1999) with modifications using an Oroboros Oxygraph O2K respirometer (Insbruck, Austria). Measurements were performed in an electronically controlled thermal environment with high temperature stability (0.001°C). ...
Article
Full-text available
2,4-Dinitrophenol (DNP) is classically known as a mitochondrial uncoupler and, at high concentrations, is toxic to a variety of cells. However, it has recently been shown that, at subtoxic concentrations, DNP protects neurons against a variety of insults and promotes neuronal differentiation and neuritogenesis. The molecular and cellular mechanisms underlying the beneficial neuroactive properties of DNP are still largely unknown. We have now used DNA microarray analysis to investigate changes in gene expression in rat hippocampal neurons in culture treated with low micromolar concentrations of DNP. Under conditions that did not affect neuronal viability, high-energy phosphate levels or mitochondrial oxygen consumption, DNP induced up-regulation of 275 genes and down-regulation of 231 genes. Significantly, several up-regulated genes were linked to intracellular cAMP signaling, known to be involved in neurite outgrowth, synaptic plasticity, and neuronal survival. Differential expression of specific genes was validated by quantitative RT-PCR using independent samples. Results shed light on molecular mechanisms underlying neuroprotection by DNP and point to possible targets for development of novel therapeutics for neurodegenerative disorders. KeywordsNeuronal cultures-Hippocampus-Neuroprotection-DNP-Gene expression-Cyclic AMP
... The oxygen consumption of single slices was determined at 30°C in a medium consisting of 125 mM NaCl, 3 mM KCl, 2 mM CaCl 2 , 1.25 mM sodium phosphate, 2 mM MgCl 2 and 20 mM HEPES-NaOH (pH = 7.4) with a PC-supported Oroboros high resolution oxygraph (Kudin et al., 1999). The protein content was determined using a protein assay kit based on Peterson's modi®cation of the micro-Lowry method according to the manufacturer's instructions (Sigma-Aldrich) ...
Article
Mitochondrial function is a key determinant of both excitability and viability of neurons. Here, we demonstrate seizure-dependent changes in mitochondrial oxidative phosphorylation in the epileptic rat hippocampus. The intense pathological neuronal activity in pilocarpine-treated rats exhibiting spontaneous seizures resulted in a selective decline of the activities of NADH-CoQ oxidoreductase (complex I of the respiratory chain) and cytochrome c oxidase (complex IV of respiratory chain) in the CA3 and CA1 hippocampal pyramidal subfields. In line with these findings, high-resolution respirometry revealed an increased flux control of complex I on respiration in the CA1 and CA3 subfields and decreased maximal respiration rates in the more severely affected CA3 subfield. Imaging of mitochondrial membrane potential using rhodamine 123 showed a lowered mitochondrial membrane potential in both pyramidal subfields. In contrast to the CA1 and CA3 subfields, mitochondrial oxidative phosphorylation was unaltered in the dentate gyrus and the parahippocampal gyrus. The changes of oxidative phosphorylation in the epileptic rat hippocampus cannot be attributed to oxidative enzyme modifications but are very likely related to a decrease in mitochondrial DNA copy number as shown in the more severely affected CA3 subfield and in cultured PC12 cells partially depleted of mitochondrial DNA. Thus, our results demonstrate that seizure activity downregulates the expression of mitochondrial-encoded enzymes of oxidative phosphorylation. This mechanism could be invoked during diverse forms of pathological neuronal activity and could severely affect both excitability and viability of hippocampal pyramidal neurons.
... This technique has been shown to allow a quantitative and hippocampal subfield-specific detection of mitochondrial respiratory chain dysfunction in patients with TLE (23). The maximal oxygen consumption in human brain microslices consisting of 400-m-thick hippocampal subfields was determined at 30°C in a medium consisting of 125 mM NaCl, 3 mM KCl, 2 mM CaCl 2 , 1.25 mM sodium phosphate, 2 mM MgCl 2 , and 20 mM HEPES-NaOH (pH 7.4) with a PC-supported Oroboros high-resolution oxygraph (24). For determination of the rates of oxygen consumption of single hippocampal slices, the first derivate of the digitally acquired oxygenconcentration trace was used. ...
Article
Interictal [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) demonstrates temporal hypometabolism in the epileptogenic zone of 60-90% of patients with temporal lobe epilepsy. The pathophysiology of this finding is still unknown. Several studies failed to show a correlation between hippocampal FDG-PET hypometabolism and neuronal cell loss. Because FDG is metabolized by hexokinase bound to the outer mitochondrial membrane, we correlated the glucose-oxidation capacity of hippocampal subfields obtained after surgical resection with the corresponding hippocampal presurgical FDG-PET activity. In 16 patients with electrophysiologically confirmed temporal lobe epilepsy, we used high-resolution respirometry to determine the basal and maximal glucose-oxidation rates in 400-microm-thick hippocampal subfields obtained after dissection of human hippocampal slices into the CA1 and CA3 pyramidal subfields and the dentate gyrus. We observed a correlation of the FDG-PET activity with the maximal glucose-oxidation rate of the CA3 pyramidal subfields (rp = 0.7, p = 0.003) but not for the regions CA1 and dentate gyrus. In accordance with previous studies, no correlation of the FDG-PET to the neuronal cell density of CA1, CA3, and dentate gyrus was found. The interictal hippocampal FDG-PET hypometabolism in patients with temporal lobe epilepsy is correlated to the glucose-oxidation capacity of the CA3 hippocampal subfield as result of impaired oxidative metabolism.
Article
N-acetylcysteine, a precursor to the potent antioxidant glutathione, has been investigated as a potential therapeutic agent for several decades; however, inconsistent efficacy has been reported for diseases of the central nervous system, postulated to result from restricted passage of this molecule across the blood-brain/spinal cord barriers and cellular membranes, resulting in low bioavailability. The amide form of N-acetylcysteine (NACA) overcomes these limitations while maintaining a high antioxidant potential, and shows promise for combating secondary pathogenesis attributed to oxidative stress. Neurotrauma precipitates a rapid and prolonged disruption of mitochondrial bioenergetics, whereby the production of reactive oxygen species overwhelms the endogenous antioxidant capacity of the cells. Two noteworthy papers from collaborative teams have recently been published in Experimental Neurology, in which NACA was applied to rodent models of traumatic brain and spinal cord injury, respectively. Using sensitive methods to measure respiratory rates in isolated mitochondrial populations, treatment with NACA was shown to maintain mitochondrial function and boost antioxidant reserves, which corresponded with improvements in structural and functional outcomes in both studies. This commentary aims to highlight key findings from this research in a broader context, with an emphasis on methodological advances, future research possibilities, and potential applicability to brain and/or spinal cord injured patients.
Article
Purpose: Interictal [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) demonstrates temporal hypometabolism in the epileptogenic zone of 60–90% of patients with temporal lobe epilepsy. The pathophysiology of this finding is still unknown. Several studies failed to show a correlation between hippocampal FDG-PET hypometabolism and neuronal cell loss. Because FDG is metabolized by hexokinase bound to the outer mitochondrial membrane, we correlated the glucose-oxidation capacity of hippocampal subfields obtained after surgical resection with the corresponding hippocampal presurgical FDG-PET activity. Methods: In 16 patients with electrophysiologically confirmed temporal lobe epilepsy, we used high-resolution respirometry to determine the basal and maximal glucose-oxidation rates in 400-μm-thick hippocampal subfields obtained after dissection of human hippocampal slices into the CA1 and CA3 pyramidal subfields and the dentate gyrus. Results: We observed a correlation of the FDG-PET activity with the maximal glucose-oxidation rate of the CA3 pyramidal subfields (rp = 0.7, p = 0.003) but not for the regions CA1 and dentate gyrus. In accordance with previous studies, no correlation of the FDG-PET to the neuronal cell density of CA1, CA3, and dentate gyrus was found. Conclusions: The interictal hippocampal FDG-PET hypometabolism in patients with temporal lobe epilepsy is correlated to the glucose-oxidation capacity of the CA3 hippocampal subfield as result of impaired oxidative metabolism.
Article
Full-text available
The OROBOROS  Oxygraph provides the instrumental basis for high-resolution respirometry. Compared to any of its competitors, the OROBOROS  Oxygraph is a high-performance instrument, and high-resolution is distinguished from conventional approaches by a combination of unique features and specifications. These set a new standard in bioenergetics, mitochondrial physiology, clinical research and diagnosis of mitochondrial pathologies.
Article
Mitochondria are cellular organelles crucial for energy supply and calcium homeostasis in neuronal cells, and their dysfunction causes seizure activity in some rare human epilepsies. To directly test whether mitochondrial respiratory chain enzymes are abnormal in the most common form of chronic epilepsy, temporal lobe epilepsy (TLE), living human brain specimens from 57 epileptic patients and 2 nonepileptic controls were investigated. In TLE patients with a hippocampal epileptic focus, we demonstrated a specific deficiency of complex I of the mitochondrial respiratory chain in the hippocampal CA3 region. In contrast, TLE patients with a parahippocampal epileptic focus showed reduced complex I activity only in parahippocampal tissue. Inhibitor titrations of the maximal respiration rate of intact human brain slices revealed that the observed reduction in complex I activity is sufficient to affect the adenosine triphosphate production rate. The abnormal complex I activity in the hippocampal CA3 region was paralleled by increased succinate dehydrogenase staining of neurons and marked ultrastructural abnormalities of mitochondria. Therefore, mitochondrial dysfunction is suggested to be specific for the epileptic focus and may constitute a pathomechanism contributing to altered excitability and selective neuronal vulnerability in TLE.
Article
We investigated the effect of the potassium channel openers diazoxide and RP66471 on mitochondrial membrane potential and mitochondrial respiration in digitonin-treated rat hippocampal homogenates. Both diazoxide and RP66471 induced a dose-dependent decrease of mitochondrial membrane potential. Concomitant with the depolarization was an increase of mitochondrial respiration. Furthermore, the mitochondrial membrane depolarization induced by diazoxide and RP66471 was significantly larger in the presence of potassium ions than in the presence of sodium ions. The diazoxide-induced (but not RP66471-induced) mitochondrial membrane depolarization was partially inhibited by blockers of the ATP-regulated potassium channel, 5-hydroxydecanoic acid or the antidiabetic sulfonylurea glibenclamide. In addition, the potassium channel openers diazoxide and RP66471 increased mitochondrial matrix volume and induced a release of cytochrome c from hippocampal mitochondria. These results indicate the presence of a mitochondrial ATP-regulated potassium channel in rat hippocampus being a target for potassium channel openers.
Article
Conventional studies of neuronal mitochondria have been limited to the use of purified preparations of isolated mitochondria, neural cell homogenates, living neurons, or brain slices. However, each technique has several drawbacks. Here, we demonstrate that the neuronal cell's membrane can be effectively permeabilized by saponin-treatment and that these permeabilized neurons can be used for qualitative and quantitative assessments of oxygen consumption in combination with registration of mitochondrial membrane potential and free [Ca2+] in the matrix. Under these conditions, the mitochondrial function can be studied without removing the mitochondria from their natural milieu thus avoiding the damage of the associated cytoskeleton and outer membrane. At the same time, the method allows the estimation of the mitochondrial function independently of other processes in the cell, and the easy manipulation of the milieu surrounding the mitochondria. Thus, the presented method offers the opportunity to study the neuronal mitochondrial function in situ and can also be applied to examine the mitochondrial function by other commonly used methods.
Article
Neuromodulatory delta sleep inducing peptide (DSIP) seems to be implicated in the attenuation of stress-induced pathological metabolic disturbances in various animal species and human beings. Mitochondria, as cell organelles, are considered especially sensitive to stress conditions. In this work, the influence of DSIP and Deltaran((R))-a recently developed product based upon DSIP-on processes of oxidative phosphorylation and ATP production in rat brain mitochondria and rat brain homogenates was studied. A polarographic measurement of oxygen consumption was applied to evaluate the impact of DSIP on maximal rates of mitochondrial respiration and coupling of respiration to ATP production. We provide evidence that DSIP affected the efficiency of oxidative phosphorylation on isolated rat brain mitochondria. This peptide significantly increased the rate of phosphorylated respiration V3, while the rate of uncoupled respiration V(DNP) remaining unchanged. It enhanced the respiratory control ratio RCR and the rate of ADP phosphorylation. DSIP and Deltaran exhibited the same action in rat brain homogenates. We also examined the influence of DSIP under hypoxia when mitochondrial respiratory activity is altered. In rats subjected to hypoxia, we detected a significant stress-mediated reduction of V3 and ADP/t values. Pretreatment of rats with DSIP at the dose of 120 microgram/kg (i.p.) prior to their subjection to hypoxia completely inhibited hypoxia-induced reduction of mitochondrial respiratory activity. The revealed capacity of DSIP to enhance the efficiency of oxidative phosphorylation found in vitro experiments could contribute to understanding pronounced stress protective and antioxidant action of this peptide in vivo.
Article
In patients with mesial temporal lobe epilepsy (MTLE) it remains an unresolved issue whether the interictal decrease in N-acetyl aspartate (NAA) detected by proton magnetic resonance spectroscopy ((1)H-MRS) reflects the epilepsy-associated loss of hippocampal pyramidal neurons or metabolic dysfunction. To address this problem, we applied high-resolution (1)H-MRS at 14.1 Tesla to measure metabolite concentrations in ex vivo tissue slices from three hippocampal subfields (CA1, CA3, dentate gyrus) as well as from the parahippocampal region of 12 patients with MTLE. In contrast to four patients with lesion-caused MTLE, we found a large variance of NAA concentrations in the individual hippocampal regions of patients with Ammon's horn sclerosis (AHS). Specifically, in subfield CA3 of AHS patients despite of a moderate preservation of neuronal cell densities the concentration of NAA was significantly lowered, while the concentrations of lactate, glucose, and succinate were elevated. We suggest that these subfield-specific alterations of metabolite concentrations in AHS are very likely caused by impairment of mitochondrial function and not related to neuronal cell loss. A subfield-specific impairment of energy metabolism is the probable cause for lowered NAA concentrations in sclerotic hippocampi of MTLE patients.
Article
Full-text available
Caspase-9 is critical for cytochrome c (cyto-c)-dependent apoptosis and normal brain development. We determined that this apical protease in the cyto-c pathway for apoptosis resides inside mitochondria in several types of cells, including cardiomyocytes and many neurons. Caspase-9 is released from isolated mitochondria on treatment with Ca2+ or Bax, stimuli implicated in ischemic neuronal cell death that are known to induce cyto-c release from mitochondria. In neuronal cell culture models, apoptosis-inducing agents trigger translocation of caspase-9 from mitochondria to the nucleus, which is inhibitable by Bcl-2. Similarly, in an animal model of transient global cerebral ischemia, caspase-9 release from mitochondria and accumulation in nuclei was observed in hippocampal and other vulnerable neurons exhibiting early postischemic changes preceding apoptosis. Loss of mitochondrial barrier function during neuronal damage from ischemia or other insults therefore may play an important role in making certain caspases available to participate in apoptosis.
Article
Full-text available
Oxygen flux measurements are critical at low rates of. respiration and at oxygen tensions below air saturation. Difficulties are primarily due to increased oxygen diffusion and consumption processes which may occur in conventional closed respirometric chambers. To avoid measurement errors encountered with standard equipment, a new type of oxygraph was developed. This instrument provides reliable quantification of oxygen flux in small organisms, tissue samples, cells, isolated mitochondria, and chloroplasts. The instrument is available commercially or can be rebuilt in a well-equipped laboratory workshop.
Article
Full-text available
Saponin-skinned human muscle fibers from M. vastus lateralis were immobilized in a quartz capillary to detect the fluorescence changes of NAD(P)H and of fluorescent flavoproteins. To get sufficient intense fluorescence signals from a small amount of muscle tissue the NAD(P)H fluorescence was excited by means of an HeCd laser at 325 nm and the flavoprotein fluorescence by an argon-ion laser at 454 nm or by the second wavelength of a HeCd laser at 442 nm. Using this experimental setup the fluorescence spectra of NAD(P)H, of alpha-lipoamide dehydrogenase and of electron-transfer flavoprotein were detected in saponin-skinned human muscle fibers. These fibers behaved identically to isolated mitochondria: (i) The addition of substrates caused an increase in reduction of mitochondrial NAD+, (ii) the addition of ADP caused its reoxidation, and (iii) the addition of respiratory chain inhibitors led to an almost complete reduction of NAD+. It was observed that the redox state of the NAD(P) system and of the alpha-lipoamide dehydrogenase reached after addition of 1 mM ADP correlates with the rate of active state respiration with NAD-dependent substrates. Therefore, this fluorimetric method is suitable to compare the mitochondrial oxidation capacities of NAD-dependent substrates in less then 5 mg wet weight muscle tissue. Moreover, the maximal changes in fluorescence of NAD(P)H and flavoproteins correlate with the amount of mitochondrial marker enzymes per milligram muscle tissue. Using this method a myopathy caused by a diminished content of mitochondria per milligram muscle tissue was observed.
Article
Full-text available
Confocal laser-scanning and digital fluorescence imaging microscopy were used to quantify the mitochondrial autofluorescence changes of NAD(P)H and flavoproteins in unfixed saponin-permeabilized myofibers from mice quadriceps muscle tissue. Addition of mitochondrial substrates, ADP, or cyanide led to redox state changes of the mitochondrial NAD system. These changes were detected by ratio imaging of the autofluorescence intensities of fluorescent flavoproteins and NAD(P)H, showing inverse fluorescence behavior. The flavoprotein signal was colocalized with the potentiometric mitochondria-specific dye dimethylaminostyryl pyridyl methyl iodide (DASPMI), or with MitoTrackerTM Green FM, a constitutive marker for mitochondria. Within individual myofibers we detected topological mitochondrial subsets with distinct flavoprotein autofluorescence levels, equally responding to induced rate changes of the oxidative phosphorylation. The flavoprotein autofluorescence levels of these subsets differed by a factor of four. This heterogeneity was substantiated by flow-cytometric analysis of flavoprotein and DASPMI fluorescence changes of individual mitochondria isolated from mice skeletal muscle. Our data provide direct evidence that mitochondria in single myofibers are distinct subsets at the level of an intrinsic fluorescent marker of the mitochondrial NAD-redox system. Under the present experimental conditions these subsets show similar functional responses.
Article
Full-text available
This work determined Ca2+ transport processes that contribute to the rise in cytosolic Ca2+ during in vitro ischemia (deprivation of oxygen and glucose) in the hippocampus. The CA1 striatum radiatum of rat hippocampal slices was monitored by confocal microscopy of calcium green-1. There was a 50-60% increase in fluorescence during 10 min of ischemia after a 3 min lag period. During the first 5 min of ischemia the major contribution was from Ca2+ entering via NMDA receptors; most of the fluorescence increase was blocked by MK-801. Approximately one-half of the sustained increase in fluorescence during 10 min of ischemia was caused by activation of Ca2+ release from mitochondria via the mitochondrial 2Na+-Ca2+ exchanger. Inhibition of Na+ influx across the plasmalemma using lidocaine, low extracellular Na+, or the AMPA/kainate receptor blocker CNQX reduced the fluorescence increase by 50%. The 2Na+-Ca2+ exchange blocker CGP37157 also blocked the increase, and this effect was not additive with the effects of blocking Na+ influx. When added together, CNQX and lidocaine inhibited the fluorescence increase more than CGP37157 did. Thus, during ischemia, Ca2+ entry via NMDA receptors accounts for the earliest rise in cytosolic Ca2+. Approximately 50% of the sustained rise is attributable to Na+ entry and subsequent Ca2+ release from the mitochondria via the 2Na+-Ca2+ exchanger. Sodium entry is also hypothesized to compromise clearance of cytosolic Ca2+ by routes other than mitochondrial uptake, probably by enhancing ATP depletion, accounting for the large inhibition of the Ca2+ increase by the combination of CNQX and lidocaine.
Article
Full-text available
Caspase-9 is critical for cytochrome c (cyto-c)-dependent apoptosis and normal brain development. We determined that this apical protease in the cyto-c pathway for apoptosis resides inside mitochondria in several types of cells, including cardiomyocytes and many neurons. Caspase-9 is released from isolated mitochondria on treatment with Ca2+ or Bax, stimuli implicated in ischemic neuronal cell death that are known to induce cyto-c release from mitochondria. In neuronal cell culture models, apoptosis-inducing agents trigger translocation of caspase-9 from mitochondria to the nucleus, which is inhibitable by Bcl-2. Similarly, in an animal model of transient global cerebral ischemia, caspase-9 release from mitochondria and accumulation in nuclei was observed in hippocampal and other vulnerable neurons exhibiting early postischemic changes preceding apoptosis. Loss of mitochondrial barrier function during neuronal damage from ischemia or other insults therefore may play an important role in making certain caspases available to participate in apoptosis.
Article
The involvement of membrane (Na+ + K+)-ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, E.C. 3.6.1.3) in the oxygen consumption of rat brain cortical slices was studied in order to determine whether (Na+ + K+)-ATPase activity in intact cells can be estimated from oxygen consumption. The stimulation of brain slice respiration with K+ required the simultaneous presence of Na+. Ouabain, a specific inhibitor of (Na+ + K+)-ATPase, significantly inhibited the (Na+ + K+)-stimulation of respiration. These observations suggest that the (Na+ + K+)-stimulation of brain slice respiration is related to ADP production as a result of (Na+ + K+)-ATPase activity. However, ouabain also inhibited non-K+ -stimulated respiration. Additionally, ouabain markedly reduced the stimulation of respiration by 2,4-dinitrophenol in a high (Na+ + K+)-medium. Thus, ouabain depresses brain slice respiration by reducing the availability of ADP through (Na+ + K+)-ATPase inhibition and acts additionally by increasing the intracellular Na+ concentration. These studies indicate that the use of ouabain results in an over-estimation of the respiration related to (Na+ + K+)-ATPase activity. This fraction of the respiration can be estimated more precisely from the difference between slice respiration in high Na+ and K+ media and that in choline, K+ media. Studies were performed with two (Na+ + K+)-ATPase inhibitors to determine whether administration of these agents to intact rats would produce changes in brain respiration and (Na+ + K+)-ATPase activity. The intraperitoneal injection of digitoxin in rats caused an inhibition of brain (Na+ + K+)-ATPase and related respiration, but chlorpromazine failed to alter either (Na+ + K+)-ATPase activity or related respiration.
Article
Some recent modifications of the protein assay by the method of Lowry, Rosebrough, Farr, and Randall (1951, J. Biol. Chem.193, 265–275) have been reexamined and altered to provide a consolidated method which is simple, rapid, objective, and more generally applicable. A DOC-TCA protein precipitation technique provides for rapid quantitative recovery of soluble and membrane proteins from interfering substances even in very dilute solutions (< 1 μg/ml of protein). SDS is added to alleviate possible nonionic and cationic detergent and lipid interferences, and to provide mild conditions for rapid denaturation of membrane and proteolipid proteins. A simple method based on a linear log-log protein standard curve is presented to permit rapid and totally objective protein analysis using small programmable calculators. The new modification compared favorably with the original method of Lowry et al.
Article
The effects of excitatory amino acids such as glutamate (Glu) and aspartate (Asp), and their receptor agonists, kainate (Ka), N-methyl-D-aspartate (NMDA), and quisqualate (Quis) on the neuronal activity and the oxygen consumption were investigated using hippocampal slices of the guinea pig. Bath application of these excitants elevated the amplitude of the postsynaptic field potential (PSP) to approximately 120% of the original level at low concentrations, although effective doses varied for the different excitants (Ka greater than NMDA greater than Quis greater than Glu greater than Asp). At concentrations over each effective dose the PSP was diminished and subsequently abolished. The application of Ka (1 x 10(-8) to 1 x 10(-6) M), NMDA (1 x 10(-8) to 1 x 10(-4) M), Quis (1 x 10(-7) to 1 x 10(-4) M), Glu (1 x 10(-5) to 5 x 10(-4) M), and Asp (1 x 10(-5) to 5 x 10(-3) M) enhanced the oxygen consumption dose-dependently, to a maximum of 120-146% of the resting level (8.43 mumol/g protein/min). It was notable that the initial increase in the oxygen consumption was associated with neuronal excitation and the doses of the excitants producing maximal oxygen consumption was in good agreement with those demonstrating disappearance of the PSP, probably because of massive depolarization of the neurones. The increase of the oxygen consumption and the neuronal activity induced by the excitants were specifically inhibited by their antagonists, such as glutamic acid diethylester (GDEE), DL-2-amino-5-phosphonovaleric acid (APV), and Joro spider toxin (JSTX). The present results strongly suggest that the enhancement of oxygen consumption due to the excitatory amino acids and agonists must reflect the neuronal activation induced by them.
Article
A kinetic method for the determination of O2 solubility in air-saturated aqueous solutions of widely varying composition and temperature is described. It is based on the precise molar stoichiometry between the rates of uptake of H+ and O2, measured with response-matched electrodes, in the reaction NADH + H+ + 1/2O2----NAD+ + H2O, catalyzed by an NADH oxidase preparation. To the initially anaerobic test system, which contains an excess of NADH and NADH oxidase in a buffered medium, an aliquot of the O2-containing solution to be tested is added and the rates of both O2 uptake and H+ uptake are recorded; the H+ electrode is calibrated against standard HCl. From these data the amount of O2 in the aliquot is calculated. Some representative values for O2 solubility at 25 degrees C and 760 mm in air-saturated systems are (i) distilled H2O, 516 nmol O/ml, (ii) 0.15 M KCl, 480 nmol O/ml, and (iii) 0.25 M sucrose, 458 nmol O/ml. Data and equations are also given for the solubility of O2 at 760 mm in air-saturated and lightly buffered 0.15 M KCl and 0.25 M sucrose over the range 5 to 40 degrees C. In the method described the rates of O2 and H+ uptake are precisely linear and stoichiometric when NADH is present in large excess over O2. However, when O2 is in excess and small additions of 340-nm-standardized NADH are made, as in earlier methods based on NADH oxidation, the endpoint is approached very gradually and tends to overestimate O2 solubility, owing to (i) the higher Km for NADH than for O2, (ii) the relatively slow response of the Clark O2 electrode, and (iii) the incomplete oxidation of NADH in the presence of 340-nm-absorbing inhibitory substances.
Article
The potassium-induced stimulation of oxygen consumption in brain slices has a threshold value of 15-20 mM potassium, and it reaches its maximum at 35-50 mM. Although this phenomenon now has been known for almost 50 years, its physiological role remains undetermined. One reason for this may be that the high concentrations of potassium that are required for this response also have many other consequences, e.g., a depolarization of the cells, and that the different effects to some extent may mask each other. For this reason this investigation studied the effects of cesium, which evokes a maximal stimulation of oxygen consumption already at 15 mM. Like potassium, concentrations of cesium that stimulate oxygen consumption also lead to an enhanced swelling. Unlike potassium, the sodium content is affected very little by these concentrations of cesium, whereas cesium and chloride contents are increased. On this basis it is concluded that the cesium-induced stimulation of oxygen uptake is a metabolic manifestation of an active uptake of cesium and chloride, which secondarily leads to an uptake of water, i.e., the cesium-induced swelling. Analogously, it is suggested that the potassium-induced stimulation of oxygen uptake represents an active accumulation of potassium and chloride.
Article
A new approach for the evaluation of brain energy metabolism in awake animals became possible as UV transmitting optical fibers became available. A variety of surface fiber optic fluorometers / reflectometers which were developed during the past decade enabled the monitoring of intramitochondrial NADH redox state in unanesthetized animals. The bundle of flexible fibers was connected to the brain via a cemented light guide holder implanted epidurally. The two signals obtained, 366 nm reflectance and 450 nm fluorescence, are subjected to various artifacts not connected to the intramitochondrial NADH redox state. In our system, the effects of movement artifacts and changes in blood oxygenation are negligible while the effects of tissue absorption or blood volume changes are considerable and could be minimized by subtraction of the two signals (1:1 ratio) providing the corrected fluorescence signal. The brain was exposed to various physiological and pathological conditions which resulted in the increase or decrease in the level of NADH. Under anoxia, hypoxia and ischemia, oxygen availability decreased and the metabolic state of the brain became more reduced (state 4-5 transition). When the brain was activated by seizures, spreading depression of hyperbaric oxygenation NADH became more oxidized (state 4-3 transition).
Article
CO2 production from exogenous glucose of cortical, whole hippocampal, and CA3 region hippocampal slices, as well as O2 consumption of whole hippocampal slices, were measured in the presence of different concentrations of kainic acid. A moderate, significant increase of CO2 production was seen only in the CA3 region hippocampal preparation at kainic acid concentrations of 10(-4)-10(-2) M. The O2 consumption, at the expense of endogenous energy stores of whole hippocampal slices, was substantially increased by 10(-3) M kainic acid when the slices were incubated without exogenous glucose. The effect was partly paralleled by the use of high (50 mM) K+ concentration. Some of the possible factors involved in the differential metabolic responses of brain slices to the action of kainic acid are discussed briefly.
Article
There are few non-destructive non-invasive approaches to the study of cortical oxidative metabolism. Nevertheless, the great necessity for the development and application of such approaches arises from the inadequacy of cell and brain slice models on the one hand and the need for interpretive monitoring of brain metabolism in humans, or if possible, under non-operative conditions. Two techniques can be used to study metabolism of the brain without the necessity of an operation, 31P NMR which is totally non-invasive and positron emission tomography which requries injection and delivery of the radio isotope. Neither of these methods affords an adequately sharp localization to provide better than regional localization (lam) under current conditions of development and application, on the other hand, when the subject is sacrificed and autoradiography of tritium labelled deoxyglucose is employed, a high degree of metabolic resolution can be obtained albeit the method averages events over times as long as 45 minutes. The need for a non-destructive continuous read out method for brain metabolism providing a high degree of localization, both spacially and within appropriate metabolic compartments is obtained with the fluorescence of mitochondrial pigments, NADH or flavoprotein. Furthermore, this method is applicable as well to frozen tissue surfaces affording high resolution 3D spacial resolution. The discovery that mitochondrial NADH is fluorescent and that the fluorescence is enhanced 15 or more times over that of the pigment in solution afforded a unique “look” at metabolic events in the matrix base of mitochondria; the NADPH therein was found not to respond to variations of electron transport in the respiratory chain (1–3). Furthermore, comparisons of changes of NADH fluorescence could be well correlated with actual tissue assays of NADH in heart and liver (4,5).
Article
This study examines the relation between Na+-K+ transport and metabolism in the canine brain. Cerebral oxygen and glucose consumption was measured by the sagittal sinus outflow technique. Synaptic transmission and related metabolism was blocked by pentobarbital 40 mg/kg (EEG flat). Lidocaine blocked an additional 15-20%, presumable by restricting Na+-K+ leak fluxes and reducing the demand for Na+-K+ transport. Ouabain blocked an additional 20-25% of metabolism. Ouabain also inhibited the Na+-K+ sensitive ATPase associated transport and caused a net efflux of K+ from the cellular compartment as evidenced by an increasing extracellular K+ concentration in the cortex. Accordingly, a total of 40% of metabolism in te EEG-arrested barbiturate inhibited brain could be related to Na+-K+ leak fluxes and associated transport. The remaining 60% are related to processes unidentified by this study. It is concluded that cerebral metabolism may be reduced below the hitherto described barbiturate minimum.
Article
N2-laser-induced fluorescence in combination with the time and spectral resolution of fluorescent NADH molecules allows on-line measurement of relative NADH concentration with high spatial resolution (diameter of optical fibre 200 microns, lambda(exc) = 337 nm, lambda(det) = 460 nm). Energy metabolism was impaired in submerged rat hippocampal slices using the inhibitors amytal, 3-nitropropionate (3-np), sodium cyanide (1 mM each) and the uncoupling agent 2,4-DNP (200 microM). A microprocessor-controlled repeated positioning of the optical fibre in CA1 and CA3 pyramidal cell layers, and CA1 stratum radiatum (CA1SR). Time-dependently, NADH fluorescence increased reversibly upon perfusion with amytal and cyanide. It was unchanged by perfusion with 3-np for 40 min and rapidly decreased upon perfusion with 2,4-DNP. The CA1/CA3 ratio of NADH fluorescence mildly decreased to 0.92 +/- 0.04 (mean +/- S.D.) at 10 min (P < 0.05) and 0.89 +/- 0.05 at 20 min (P < 0.01) upon perfusion with amytal. The CA1/CA3 ratio increased to 1.56 +/- 0.28 at 10 min (P < 0.01) and 1.29 +/- 0.35 at 20 min (P < 0.05) upon application of 2,4-DNP. Fluorescence in CA1SR was similar to fluorescence in CA1 upon perfusion with 2,4-DNP and similar to CA3 upon perfusion with amytal. We conclude that NADH fluorescence can be measured with high regional selectivity and specificity in hippocampal slices. Selective inhibition of mitochondrial complex I and uncoupling of energy metabolism differentially impair NADH concentration in different hippocampal areas.
Article
Many cases of autosomal dominant early onset Alzheimer's disease (AD) result from mutations in the gene encoding presenilin-1 (PS-1). PS-1 is an integral membrane protein expressed ubiquitously in neurons throughout the brain in which it is located primarily in endoplasmic reticulum (ER). Although the pathogenic mechanism of PS-1 mutations is unknown, recent findings suggest that PS mutations render neurons vulnerable to apoptosis. Because increasing evidence indicates that mitochondrial alterations contribute to neuronal death in AD, we tested the hypothesis that PS-1 mutations sensitize neurons to mitochondrial failure. PC12 cell lines expressing a PS-1 mutation (L286V) exhibited increased sensitivity to apoptosis induced by 3-nitropropionic acid (3-NP) and malonate, inhibitors of succinate dehydrogenase, compared with control cell lines and lines overexpressing wild-type PS-1. The apoptosis-enhancing action of mutant PS-1 was prevented by antioxidants (propyl gallate and glutathione), zVAD-fmk, and cyclosporin A, indicating requirements of reactive oxygen species (ROS), caspases, and mitochondrial permeability transition in the cell death process. 3-NP induced a rapid elevation of [Ca2+]i, which was followed by caspase activation, accumulation of ROS, and decreases in mitochondrial reducing potential and transmembrane potential in cells expressing mutant PS-1. The calcium chelator BAPTA AM and agents that block calcium release from ER and influx through voltage-dependent channels prevented mitochondrial ROS accumulation and membrane depolarization and apoptosis. Our data suggest that by perturbing subcellular calcium homeostasis presenilin mutations sensitize neurons to mitochondria-based forms of apoptosis that involve oxidative stress.
Article
Mitochondria provide the main neuronal energy supply and are important organelles for the sequestration of intracellular Ca2+. This indicates a possible important role for mitochondria in modulating neuronal excitability in normal function as well as in disease. Therefore, we have investigated mitochondrial oxidative phosphorylation in the kainate model of epilepsy. We measured the oxygen consumption of single 400-micron rat hippocampal slices applying high resolution respirometry and determined mitochondrial NAD(P)H autofluorescence signal changes in single slices by laser-excited fluorescence spectroscopy. We observed an about 2-fold higher (p<0.001) basal glucose oxidation rate in slices from kainate-treated animals. This increased endogenous energy consumption was found to be unrelated to spontaneous activity since it was not sensitive to the inhibitors of the sodium-potassium ATPase ouabain and of the mitochondrial adenine nucleotide translocator atractyloside. This finding suggested an increased mitochondrial energy turnover in kainate-induced epilepsy. Furthermore, the uncoupler-stimulated oxygen consumption of the slices was approximately 1.3-fold higher (p<0.01) in the kainate model. In accordance with the respirometric data, fluorescence spectroscopy showed decreased reduction levels of the mitochondrial NAD-system in glucose oxidizing slices from kainate-treated rats. The preincubation of epileptic hippocampal slices with either BAPTA AM, ruthenium red or TPP+ increased the atractyloside sensitivity of glucose oxidation to about 1.4-fold (p<0.01). These observations indicate that the increased mitochondrial energy turnover in hippocampal slices from kainate-treated rats is most possibly caused by futile Ca2+-cycling.
Oxygen and glucose consumption related to Na q -K q transport in canine brain
  • J Astrup
  • P M Sorensen
  • H R Sorensen
J. Astrup, P.M. Sorensen, H.R. Sorensen, Oxygen and glucose consumption related to Na q -K q transport in canine brain, Stroke Ž .