Article

Energetics of rat papillary muscle during contractions with sinusoidal length changes

Department of Physiology, Monash University, Clayton, Victoria 3168, Australia.
AJP Heart and Circulatory Physiology (Impact Factor: 3.84). 06/2000; 278(5):H1545-54.
Source: PubMed

ABSTRACT

The mechanical efficiency of rat cardiac muscle was determined using a contraction protocol involving cyclical, sinusoidal length changes and phasic stimulation at physiological frequencies (1-4 Hz). Experiments were performed in vitro (27 degrees C) using rat left ventricular papillary muscles. Efficiency was determined from measurements of the net work performed and enthalpy produced by muscles during a series of 40 contractions. Net mechanical efficiency was defined as the percentage of the total, suprabasal enthalpy output that appeared as mechanical work. Maximum efficiency was approximately 15% at contraction frequencies between 2 and 2.5 Hz. At lower and higher frequencies, efficiency was approximately 10%. Enthalpy output per cycle was independent of cycle frequency at all but the highest frequency used. The basis of the high efficiency between 2 and 2.5 Hz was that work output was also greatest at these frequencies. At these frequencies, the duration of the applied length change was well matched to the kinetics of force generation, and active force generation occurred throughout the shortening period.

0 Followers
 · 
3 Reads
  • Source
    • "The adequacy of diffusive O 2 supply to the isolated muscles was assessed by calculating the profile of O 2 partial pressure (P O 2 ) through the cross-section of a cylindrical muscle. The analysis, which has been described in detail previously (Loiselle, 1985; Baxi et al. 2000; Barclay et al. 2003), was based on Hill's (1928) analysis of diffusion into a cylindrical muscle but, rather than assuming mitochondrial function to be independent of P O 2 , the analysis incorporated a more realistic, sigmoidal relationship between the rate of mitochondrial oxygen consumption and P "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to determine whether the net efficiency of mammalian muscles depends on muscle fibre type. Experiments were performed in vitro (35°C) using bundles of muscle fibres from the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles of the mouse. The contraction protocol consisted of 10 brief contractions, with a cyclic length change in each contraction cycle. Work output and heat production were measured and enthalpy output (work + heat) was used as the index of energy expenditure. Initial efficiency was defined as the ratio of work output to enthalpy output during the first 1 s of activity. Net efficiency was defined as the ratio of the total work produced in all the contractions to the total, suprabasal enthalpy produced in response to the contraction series, i.e. net efficiency incorporates both initial and recovery metabolism. Initial efficiency was greater in soleus (30 ± 1%; n = 6) than EDL (23 ± 1%; n = 6) but there was no difference in net efficiency between the two muscles (12.6 ± 0.7% for soleus and 11.7 ± 0.5% for EDL). Therefore, more recovery heat was produced per unit of initial energy expenditure in soleus than EDL. The calculated efficiency of oxidative phosphorylation was lower in soleus than EDL. The difference in recovery metabolism between soleus and EDL is unlikely to be due to effects of changes in intracellular pH on the enthalpy change associated with PCr hydrolysis. It is suggested that the functionally important specialization of slow-twitch muscle is its low rate of energy use rather than high efficiency. Yes Yes
    Full-text · Article · Oct 2004 · The Journal of Physiology
  • Source
    • "A contraction frequency of 2 Hz was selected as the basic frequency for this study. In a recent report on the energetics of rat papillary muscle, this frequency was found to be within the range for maximum work output and maximum net mechanical efficiency (Baxi et al., 2000). In addition, a number of experiments were performed at a contraction rate of 3 Hz. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of cardiac muscle energetics have traditionally used contraction protocols with strain patterns that bear little resemblance to those observed in vivo. This study aimed to develop a realistic strain protocol, based on published in situ measurements of contracting papillary muscles, for use with isolated preparations. The protocol included the three phases observed in intact papillary muscles: an initial isometric phase followed by isovelocity shortening and re-lengthening phases. Realistic papillary muscle dynamics were simulated in vitro (27 degrees C) using preparations isolated from the left ventricle of adult male rats. The standard contraction protocol consisted of 40 twitches at a contraction rate of 2 Hz. Force, changes in muscle length and changes in muscle temperature were measured simultaneously. To quantify the energetic costs of contraction, work output and enthalpy output were determined, from which the maximum net mechanical efficiency could be calculated. The most notable result from these experiments was the constancy of enthalpy output per twitch, or energy cost, despite the various alterations made to the protocol. Changes in mechanical efficiency, therefore, generally reflected changes in work output per twitch. The variable that affected work output per twitch to the greatest extent was the amplitude of shortening, while changes in the duration of the initial isometric phase had little effect. Decreasing the duration of the shortening phase increased work output per twitch without altering enthalpy output per twitch. Increasing the contraction frequency from 2 to 3 Hz resulted in slight decreases in the work output per twitch and in efficiency. Using this realistic strain protocol, the maximum net mechanical efficiency of rat papillary muscles was approximately 15 %. The protocol was modified to incorporate an isometric relaxation period, thus allowing the model to simulate the main mechanical features of ventricular function.
    Full-text · Article · Dec 2001 · Journal of Experimental Biology
  • Source
    • "The preparations used in the present study were much smaller (cross-sectional area 0.57±0.06 mm 2 , mean ± S.E.M., N=6) than those used as the basis of the previous model (0.98±0.05 mm 2 , mean ± S.E.M., N=8; Baxi et al., 2000), providing further confidence that O2 supply would not have limited muscle metabolism. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The results of previous studies suggest that the maximum mechanical efficiency of rat papillary muscles is lower during a contraction protocol involving sinusoidal length changes than during one involving afterloaded isotonic contractions. The aim of this study was to compare directly the efficiency of isolated rat papillary muscle preparations in isotonic and sinusoidal contraction protocols. Experiments were performed in vitro (27 degrees C) using left ventricular papillary muscles from adult rats. Each preparation performed three contraction protocols: (i) low-frequency afterloaded isotonic contractions (10 twitches at 0.2 Hz), (ii) sinusoidal length change contractions with phasic stimulation (40 twitches at 2 Hz) and (iii) high-frequency afterloaded isotonic contractions (40 twitches at 2 Hz). The first two protocols resembled those used in previous studies and the third combined the characteristics of the first two. The parameters for each protocol were adjusted to those that gave maximum efficiency. For the afterloaded isotonic protocols, the afterload was set to 0.3 of the maximum developed force. The sinusoidal length change protocol incorporated a cycle amplitude of +/-5% resting length and a stimulus phase of -10 degrees. Measurements of force output, muscle length change and muscle temperature change were used to calculate the work and heat produced during and after each protocol. Net mechanical efficiency was defined as the proportion of the energy (enthalpy) liberated by the muscle that appeared as work. The efficiency in the low-frequency, isotonic contraction protocol was 21.1+/-1.4% (mean +/- s.e.m., N=6) and that in the sinusoidal protocol was 13.2+/-0.7%, consistent with previous results. This difference was not due to the higher frequency or greater number of twitches because efficiency in the high-frequency, isotonic protocol was 21.5+/-1.0%. Although these results apparently confirm that efficiency is protocol-dependent, additional experiments designed to measure work output unambiguously indicated that the method used to calculate work output in isotonic contractions overestimated actual work output. When net work output, which excludes work done by parallel elastic elements, rather than total work output was used to determine efficiency in afterloaded isotonic contractions, efficiency was similar to that for sinusoidal contractions. The maximum net mechanical efficiency of rat papillary muscles performing afterloaded isotonic or sinusoidal length change contractions was between 10 and 15%.
    Preview · Article · Jun 2001 · Journal of Experimental Biology
Show more