Anegawa NJ, Guttmann RP, Grant ER, Anand R, Lindstrom J, Lynch DR.. N-Methyl-D-aspartate receptor mediated toxicity in nonneuronal cell lines: characterization using fluorescent measures of cell viability and reactive oxygen species production. Brain Res Mol Brain Res 77: 163-175

ArticleinMolecular Brain Research 77(2):163-75 · June 2000with4 Reads
Impact Factor: 2.00 · DOI: 10.1016/S0169-328X(00)00050-4 · Source: PubMed

    Abstract

    Cells transfected with specific N-methyl-D-aspartate (NMDA) receptor subtypes undergo cell death that mimics glutamate-induced excitotoxicity pharmacologically. We have further characterized the mechanisms of cell death resulting from NMDA receptor activation in such cells through development of cell counting methods based on co-transfection with green fluorescent protein. When co-transfected with NMDA receptors, GFP expression was limited to live cells as indicated by the observation that GFP was only detected in cells which were positive for markers of live cells, and was found in no cells which were trypan blue or propidium iodide positive. Using co-transfection with green fluorescent protein and cell counting of viable cells with a fluorescence activated cells sorter, we confirmed the subunit-specific profile of NMDA receptor-mediated cell death in cells transfected with NMDA receptors. Toxicity was greatest in the NR1A/2A receptor, less in the NR1A/2B receptor, and least in NR1A/2C receptors. Cell death also differed pharmacologically between subunit combinations. Cell death in cells transfected with NR 1A/2A was blocked by amino-phosphonovaleric acid at lower concentrations than in cells transfected with NR 1A/2B. In cells transfected with the NR1A/2A or NR1A/2B combinations but not NR1A/2C, cell death was also associated with production of reactive oxygen species. In addition, removal of the final 400 amino acids of the C-terminal region of NR2A decreased cell death. The use of GFP based cell counting provides a sensitive mechanism for assessing the mechanism of excitotoxicity in transfected cell models.