Attenuation of 8-OH-DPAT-induced decreases in 5-HT synthesis in brain regions of rats adapted to a repeated stress schedule

ArticleinStress 3(2):123-9 · January 2000with1 Read
Impact Factor: 2.72 · DOI: 10.3109/10253899909001117 · Source: PubMed

    Abstract

    Previously it has been shown that single episode of 2 h restraint produced behavioral deficits in rats which were not observed following daily restraint period of 2h/day for 5 days. It was suggested that adaptation to a stress schedule develops when the similar stress is administered repeatedly. In view of a role of 5-hydroxytryptamine (5-HT) in adaptation to stress the present study concerns effects of a 5-HT-1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) on the synthesis of 5-HT in brain regions of rats adapted to a repeated restraint stress schedule of 2h/day for 5 days. The drug injected systemically at a dose of 1 mg/kg decreased 5-HT synthesis in the hypothalamus, cortex, hippocampus, striatum and raphe regions of previously unrestrained rats. These decreases were either smaller (raphe) or not observed (hypothalamus, cortex and hippocampus) in most brain regions of rats adapted to the repeated restraint stress schedule of 2h/day for 5 days. These results suggest that a subsensitive negative feedback effect on the synthesis of 5-HT leading to an increase in synaptic 5-HT concentration might help coping with stress demand to produce adaptation to stress.