Article

Scientific basis for the therapeutic use of Withania somnifera (Ashwagandha): A Review

Los Angeles College of Chiropractic (LACC), 16200 E Amber Valley Dr., Whittier, CA 90609-1166.
Alternative medicine review: a journal of clinical therapeutic (Impact Factor: 3.83). 09/2000; 5(4):334-46.
Source: PubMed

ABSTRACT

The objective of this paper is to review the literature regarding Withania somnifera (ashwagandha, WS) a commonly used herb in Ayurvedic medicine. Specifically, the literature was reviewed for articles pertaining to chemical properties, therapeutic benefits, and toxicity.
This review is in a narrative format and consists of all publications relevant to ashwagandha that were identified by the authors through a systematic search of major computerized medical databases; no statistical pooling of results or evaluation of the quality of the studies was performed due to the widely different methods employed by each study.
Studies indicate ashwagandha possesses anti-inflammatory, antitumor, antistress, antioxidant, immunomodulatory, hemopoietic, and rejuvenating properties. It also appears to exert a positive influence on the endocrine, cardiopulmonary, and central nervous systems. The mechanisms of action for these properties are not fully understood. Toxicity studies reveal that ashwagandha appears to be a safe compound.
Preliminary studies have found various constituents of ashwagandha exhibit a variety of therapeutic effects with little or no associated toxicity. These results are very encouraging and indicate this herb should be studied more extensively to confirm these results and reveal other potential therapeutic effects. Clinical trials using ashwagandha for a variety of conditions should also be conducted.

Download full-text

Full-text

Available from: Simon Dagenais
  • Source
    • "The plant is known for its mind rejuvenating and cognition promoting effects. The roots of WS have been used as a nerve tonic and adaptogen since long (Mishra et al. 2000). Medicinal properties of WS roots are primarily attributed to the presence of active multicomponents known as withanolides (Kurapati et al. 2013), which have shown antioxidant effect in the brain and are considered to be responsible for its diverse pharmacological properties (Mirjalili et al. 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was designed to evaluate the beneficial effects of Withania somnifera (WS) pre-supplementation on middle cerebral artery occlusion (MCAO) model of ischemic stroke. Ischemic stroke was induced in the rats by inserting intraluminal suture for 90 min, followed by reperfusion injury for 24 h. The animals were assessed for locomotor functions (by neurological deficit scores, narrow beam walk and rotarod test), cognitive and anxiety-like behavioural functions (by morris water maze and elevated plus maze test). MCAO animals showed significant impairment in locomotor and cognitive functions. Neurobehavioural changes were accompanied by decreased acetylcholinesterase activity, increased oxidative stress in terms of enhanced lipid peroxidation and lowered thiol levels in the MCAO animals. In addition, MCAO animals had cerebral infarcts and the presence of pycnotic nuclei. Single-photon emission computerized tomography (SPECT) of MCAO animals revealed a cerebral infarct as a hypoactive area. On the other hand, pre-supplementation with WS (300 mg/kg body weight) for 30 days to MCAO animals was effective in restoring the acetylcholinesterase activity, lipid peroxidation, thiols and attenuated MCAO induced behavioural deficits. WS significantly reduced the cerebral infarct volume and ameliorated histopathological alterations. Improved blood flow was observed in the SPECT images from the brain regions of ischemic rats pre-treated with WS. The results of the study showed a protective effect of WS supplementation in ischemic stroke and are suggestive of its potential application in stroke management.
    Full-text · Article · Dec 2015 · Cellular and Molecular Neurobiology
  • Source
    • "Nigrostriatal dopaminergic neurons of the mid brain region are more susceptible towards oxidative stress induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) (Mishra et al., 2000; Sadrzadeh and Saffari, 2004). The deleterious effect of ROS and RNS can be attenuated by detoxification of free radicals using antioxidants. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc) region of brain. Oxidative stress and inflammation plays important role in the neurodegeneration and development of PD. Ursolic Acid (UA: 3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid found in various medicinal plants. Its anti-inflammatory and antioxidant activity is a well-established fact. In this paper, the neuroprotective efficiency of UA in MPTP induced PD mouse model has been explored. For this purpose, we divided 30 mice into 5 different groups; first was control, second was MPTP-treated, third, fourth and fifth were different doses of UA viz., 5mg/kg, 25mg/kg, and 50mg/kg body weight (wt) respectively, along with MPTP. After 21 days of treatment, different behavioral parameters and biochemical assays were conducted. Tyrosine hydroxylase (TH) immunostaining of SN dopaminergic neurons as well as HPLC quantification of dopamine and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) were also performed. Our results proved that, UA improves behavioral deficits, restored altered dopamine level and protect dopaminergic neurons in the MPTP intoxicated mouse. Among three different doses, 25mg/kg body wt was the most effective dose for the PD. This work reveals the potential of UA as a promising drug candidate for PD treatment.
    Full-text · Article · Dec 2015 · Journal of chemical neuroanatomy
  • Source
    • "The withanolides have C28 steroidal nucleus with C9 side chain, having six-membered lactone ring. So far, 12 alkaloids, 35 withanolides and several sitoindosides have been isolated, and their structures have been elucidated[6,7]. Various alkaloids include withanine, somniferine, somnine, somniferinine, withananine , psuedo-withanine, tropine, psuedotropine, 3-a-gloyloxy- tropane, choline, cuscohygrine, isopelletierine, anaferine and anahydrine. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas species are opportunistically pathogenic to humans, yet closely related species are used in biotechnology applications. In order to screen for the pathogenic potential of strains considered for biotechnology applications, several Pseudomonas strains (P.aeruginosa (Pa), P.fluorescens (Pf), P.putida (Pp), P.stutzeri (Ps)) were compared using functional virulence and toxicity assays. Most Pa strains and Ps grew at temperatures between 28°C and 42°C. However, Pf and Pp strains were the most antibiotic resistant, with ciprofloxacin and colistin being the most effective of those tested. No strain was haemolytic on sheep blood agar. Almost all Pa, but not other test strains, produced a pyocyanin-like chromophore, and caused cytotoxicity towards cultured human HT29 cells. Murine endotracheal exposures indicated that the laboratory reference strain, PAO1, was most persistent in the lungs. Only Pa strains induced pro-inflammatory and inflammatory responses, as measured by elevated cytokines and pulmonary Gr-1 -positive cells. Serum amyloid A was elevated at ≥ 48 h post-exposure by only some Pa strains. No relationship was observed between strains and levels of peripheral leukocytes. The species designation or isolation source may not accurately reflect pathogenic potential, since the clinical strain Pa10752 was relatively nonvirulent, but the industrial strain Pa31480 showed comparable virulence to PAO1. Functional assays involving microbial growth, cytotoxicity and murine immunological responses may be most useful for identifying problematic Pseudomonas strains being considered for biotechnology applications.
    Full-text · Article · Nov 2015 · PLoS ONE
Show more