Evaluation of the Accuracy and Precision of Lung Aerosol Deposition Measurements from Single-Photon Emission Computed Tomography Using Simulation

Department of Medical Physics and Bioengineering, Southampton University Hospitals, NHS Trust, Southampton, United Kingdom.
Journal of Aerosol Medicine (Impact Factor: 1.61). 02/2000; 13(3):187-98. DOI: 10.1089/jam.2000.13.187
Source: PubMed


Single-photon emission computed tomography (SPECT) imaging is being increasingly used to assess inhaled aerosol deposition. This study uses simulation to evaluate the errors involved in such measurements and to compare them with those from conventional planar imaging. SPECT images of known theoretical distributions of radioaerosol in the lung have been simulated using lung models derived from magnetic resonance studies in human subjects. Total lung activity was evaluated from the simulated images. A spherical transform of the lung distributions was performed, and the absolute penetration index (PI) and a relative value expressed as a fraction of that in a simulated ventilation image were calculated. All parameters were compared with the true value used in the simulation, and the errors were assessed. An iterative method was used to correct for the partial volume effect, and its effectiveness in improving errors was evaluated. The errors were compared with those of planar imaging. The precision of measurements was significantly better for SPECT than planar imaging (2.8 vs 6.3% for total lung activity, 6 vs 20% for PI, and 3 vs 6% for relative PI). The method of correcting for the influence of the partial volume effect significantly improved the accuracy of PI evaluation without affecting precision. SPECT is capable of accurate and precise measurements of aerosol distribution in the lung, which are improved compared with those measured by conventional planar imaging. A technique for correcting the SPECT data for the influence of the partial volume effect has been described. Simulation is demonstrated as a valuable method of technique evaluation and comparison.

1 Read
  • Source
    • "The values obtained depend quite significantly on the size of the areas chosen. This dependency can be considerably reduced by normalising the central to peripheral ratios to lung volume [11,12]. Lung volume is often estimated using transmission scanning or ventilation imaging. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Determination of regional lung air volume has several clinical applications. This study investigates the use of mid-tidal breathing CT scans to provide regional lung volume data. Methods Low resolution CT scans of the thorax were obtained during tidal breathing in 11 healthy control male subjects, each on two separate occasions. A 3D map of air volume was derived, and total lung volume calculated. The regional distribution of air volume from centre to periphery of the lung was analysed using a radial transform and also using one dimensional profiles in three orthogonal directions. Results The total air volumes for the right and left lungs were 1035 +/− 280 ml and 864 +/− 315 ml, respectively (mean and SD). The corresponding fractional air volume concentrations (FAVC) were 0.680 +/− 0.044 and 0.658 +/− 0.062. All differences between the right and left lung were highly significant (p < 0.0001). The coefficients of variation of repeated measurement of right and left lung air volumes and FAVC were 6.5% and 6.9% and 2.5% and 3.6%, respectively. FAVC correlated significantly with lung space volume (r = 0.78) (p < 0.005). FAVC increased from the centre towards the periphery of the lung. Central to peripheral ratios were significantly higher for the right (0.100 +/− 0.007 SD) than the left (0.089 +/− 0.013 SD) (p < 0.0001). Conclusion A technique for measuring the distribution of air volume in the lung at mid-tidal breathing is described. Mean values and reproducibility are described for healthy male control subjects. Fractional air volume concentration is shown to increase with lung size.
    Full-text · Article · Jul 2014 · BMC Medical Imaging
  • Source
    • "This means that the image distribution does not perfectly match the true activity distribution. Knowledge of the blurring process enables this effect to be corrected (Fleming et al. 2000bFleming et al. , 2001). The resulting semi-experimental shell deposition data (expressed in percent of the total lung activity), representing averages over all 12 test subjects and normalized to a total deposition in the lungs of 100%, are plotted in Figure 3together with the corresponding results from the model simulations (mean ± 1 SD) for both aerosols. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To further validate a stochastic particle deposition model, three-dimensional deposition patterns predicted by that model were compared with corresponding spatial particle deposition data obtained from SPECT measurements. In the in vivo inhalation experiments, two different polydisperse aerosols with mass median aerodynamic diameters of 1.6 μ m and 6.8 μ m were inhaled by 12 test subjects, using different nebulizers. Predicted and measured deposition data were compared on three different levels: (1) total lung deposition, (2) deposition per hemispherical shell, and (3) deposition per airway generation. First, experimental and theoretical total lung deposition data showed good agreement for both the fine (65 ± 9% vs. 55 ± 21%) and the coarse aerosols (55 ± 8% vs. 46 ± 4%). Second, predicted deposition per hemispherical shell also corresponded well with the experimental data, both exhibiting small deposition fractions in the inner shells and a roughly quadratic increase in the outer shells. Third, fair agreement was observed for the deposition fractions per airway generation, both experimental data and modelling predictions exhibiting relatively small deposition fractions in central bronchial airway generations, followed by a steep increase in the peripheral respiratory airways. While the overall agreement between measured SPECT data and computed deposition fractions demonstrates that SPECT data can indeed be used for model validation, the current spatial resolution of the SPECT method allows only a limited validation of model predictions at the single airway generation level.
    Full-text · Article · Aug 2005 · Aerosol Science and Technology
  • Source

    Full-text · Article ·
Show more