Dermatan sulfates of normal and scarred fascia

Department of Clinical Chemistry and Laboratory Diagnostics, Silesian Medical Academy, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology (Impact Factor: 1.55). 03/2001; 128(2):221-32. DOI: 10.1016/S1096-4959(00)00313-4
Source: PubMed


We evaluated the composition of dermatan sulfates (DS) derived from 23 samples of normal and 23 samples of scarred fascia lata. We analyzed the molecular weight of intact DS chains and the length of chain regions comprising: (1) clusters of L-iduronate-containing disaccharides ("iduronic sections"); (2) clusters of D-glucuronate-containing disaccharides ("glucuronic sections"); and (3) copolymeric sections with both types of disaccharides. A portion of scarred fascia DS chains demonstrated higher molecular weight compared with those from normal tissue. Most disaccharides of DS chains derived from both fascia types form copolymeric segments - heterogeneous in size - with alternatively distributed single disaccharides with glucuronic residues and mainly single ones with iduronate. Only a small number of disaccharides form "glucuronic sections" of heterogeneous size or short "iduronic sections". However, the scarred fascia DS chains demonstrate an increased content of shorter "glucuronic sections" and shorter, often oversulfated, copolymeric segments. It seems that in normal fascia, the DS chain type with a single, long copolymeric region and a single, shorter "glucuronic section" is predominant, while in scarred tissue an increase in multidomain DS chain content may occur.

8 Reads
  • Source
    • "The proper functioning of cells and tissues is to a considerable degree conditioned by mineral homeostasis . Even a small degree of disturbance of that homeostasis may potentially lead to the occurrence of functional, or even structural, abnormalities (Larsen et al., 1960; Sahin et al., 2001; Koźma et al., 2001). From the point of view of tissue physiology, proper levels of both macro (e.g., Ca, Mg, Na, K, and Cl) and micro elements (e.g., Fe, Co, Cu, Zn) are essential. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The fascial system is an integral part of the musculoskeletal system. It is a three-dimensional network of connective tissue spreading ubiquitously throughout the body, surrounding muscles, bones, internal organs, nerves, vessels, and other structures. The basic biophysical properties of the fascial system are determined by its structure and chemical composition. This study aimed to determine the elemental composition of pathologically unchanged fascia lata of the thigh, collected during autopsies on humans and dogs. The wide spectrum of elements analysed included both macro and micro elements. The analyses were conducted using scanning electron microscopy with X-ray microanalysis (SEM-EDS). Concentrations of the following macro and micro elements were dermined: C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Fe Co, Ni, Cu, and Zn. The obtained results showed significant differences between human and canine fascia lata regarding the content of most of the examined elements (p < 0.05), except for N. These data may in future provide a starting point for the establishment of reference values for the content of various elements in normal fascial tissue and may also serve to verify the usefulness of experimental animal material as a substitute for human tissue.
    Full-text · Article · Nov 2012 · Acta biochimica Polonica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently it has been reported that the molecular size of decorin dermatan sulfate (DS) was increased in healing skin after hapten application and that the elongated DS was distributed in enlarged interfibrillar space among thin collagen fibrils in situ. Here we show that such modulation of the length of decorin DS is temporary. Although the size of decorin DS was evidently increased on day 15, it decreased to almost normal size on day 35 when the altered disaccharide composition of DS was also recovered. Electron microscopic observation revealed that elongated decorin DS was localized among thin collagen fibrils packed loosely in hapten-treated skin on day 15. In contrast, decorin DS of normal size was distributed among thick collagen fibrils packed tightly on day 35. These results suggest that size control of decorin DS plays important roles in organization of collagen fibrils into bundles by regulating interfibrillar space in healing skin, particularly in maturation of collagen fibrils through shortening of decorin DS in later stages of healing.
    No preview · Article · Oct 2002 · Journal of Dermatological Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dupuytren's disease is a palmar fibromatosis associated with changes in fibroblast activity that also affect the metabolism of extracellular matrix components. In contrast to disease connected alterations in collagen and non-collagenous glycoproteins (mainly fibronectin), the metabolism of proteoglycans, being glycosaminoglycan modified glycoproteins, is poorly understood. Thus, the aim of the present study was the characterization of matrix proteoglycans (PGs) derived from normal fascia and Dupuytren's fascia. Extracted and purified PGs (particularly small PGs) were analysed for content, molecular mass, immunoreactivity and glycosaminoglycan chain structure. The matrix of normal fascia mainly contains decorin [small dermatan sulfate (DS) PG] with biglycan (another small DSPG) and large chondroitin sulfate(CS)/DSPG representing minor components. Dupuytren's disease is associated with the remodeling of matrix PG composition. The most prominent alteration is an accumulation of biglycan frequently bearing DS chains with higher molecular masses. Moreover, the amount of large CS/DSPG is increased. In contrast, decorin displays changes affecting mainly DS chain structure reflected in (i) an increase in some chain molecular masses, (ii) an enhanced content of iduronate disaccharide clusters, and (iii) oversulfation of disaccharide repeats. The PG alterations observed in Dupuytren's fascia may influence the matrix properties and contribute to disease progression.
    No preview · Article · May 2005 · Journal of Biochemistry
Show more