Characterization of the prostaglandin receptors in human osteoblasts in culture

ArticleinProstaglandins Leukotrienes and Essential Fatty Acids 64(3):203-10 · April 2001with7 Reads
DOI: 10.1054/plef.1999.0127 · Source: PubMed
Abstract
Prostaglandins have complex actions on bone metabolism that depend on interactions with different types and subtypes of receptors. Our objective was to characterize the prostaglandins receptors present in primary cultures of human osteoblasts. RT-PCR analysis revealed the presence of DP, EP(4), IP, FP and TP receptor mRNA in primary cultures of human osteoblasts. FP receptor mRNA was detected only after 3 weeks of confluency, all the others were detected at every culture time tested. To verify the functionality of these receptors we challenged the cells with the prostanoids and synthetic analogues and determined the intracellular levels of cAMP. All receptors found by RT-PCR were coupled to second messengers except for the DP subtype. These results clearly show the presence of functional EP(4), IP, FP and TP receptors in human osteoblasts in culture.
    • "It is evident that PGE 2 promotes osteogenic differentiation in BMSC mainly via activation of the EP2 and EP4 receptor [24] followed by cAMP-dependent PKA-/MAPK signalling , which ultimately leads to enhanced expression of osteoblast-associated transcription factors such as Runx2, Osterix, and Dlx5 [11]. In human osteoblasts, the following functional prostanoid receptors have been identified: EP4, IP, FP, and TP [25]. Prostacyclin is known to be the most effective prostanoid in inhibition of bone resorption and osteoclast activity262728. "
    [Show abstract] [Hide abstract] ABSTRACT: Background Iloprost, a stable prostacyclin I2 analogue, seems to have an osteoblast-protective potential, whereas indomethacin suppresses new bone formation. The aim of this study was to investigate human bone marrow stromal cell (BMSC) proliferation and differentiation towards the osteoblastic lineage by administration of indomethacin and/or iloprost. Material/Methods Human bone marrow cells were obtained from 3 different donors (A=26 yrs/m; B=25 yrs/f, C=35 yrs/m) via vacuum aspiration of the iliac crest followed by density gradient centrifugation and flow cytometry with defined antigens (CD105+/73+/45−/14−). The cells were seeded and incubated as follows: without additives (Group 0; donor A/B/C), with 10−7 M iloprost only (Group 0+ilo; A/B), with indomethacin only in concentrations of 10−6 M (Group 1, A), 10−5 M (Group 2, B), 10−4 M (Group 3, A/B), and together with 10−7 M iloprost (Groups 4–6, A/B/C). On Day 10 and 28, UV/Vis spectrometric and immunocytochemical assays (4 samples per group and donor) were performed to investigate cell proliferation (cell count measurement) and differentiation towards the osteoblastic lineage (CD34−, CD45−, CD105+, type 1 collagen (Col1), osteocalcin (OC), alkaline phosphatase (ALP), Runx2, Twist, specific ALP-activity). Results Indomethacin alone suppressed BMSC differentiation towards the osteoblastic lineage by downregulation of Runx2, Col1, and ALP. In combination with indomethacin, iloprost increased cell proliferation and differentiation and it completely suppressed Twist expression at Day 10 and 28. Iloprost alone did not promote cell proliferation, but moderately enhanced Runx2 and Twist expression. However, the proliferative effects and the specific ALP-activity varied donor-dependently. Conclusions Iloprost partially antagonized the suppressing effects of indomethacin on BMSC differentiation towards the osteoblast lineage. It enhanced the expression of Runx2 and, only in the presence of indomethacin, it completely suppressed Twist. Thus, in the treatment of avascular osteonecrosis or painful bone marrow edema, the undesirable effects of indomethacin might be counterbalanced by iloprost.
    Full-text · Article · Nov 2014
    • "PGE 2 has been demonstrated to exert both anabolic and catabolic effects depending on the activation of its specific receptor subtypes. In osteoblasts, three such receptors, EP1, EP2 and EP4, are present [33,34]. PGE 2 signalling through the EP1 receptor enhances pro-anabolic effects such as bone formation, whereas signalling through the EP2 and EP4 receptors induces catabolic effects on bone353637. "
    [Show abstract] [Hide abstract] ABSTRACT: Background: Osteoarthritis (OA) is the most common human joint disease. Recent studies suggest that an abnormal subchondral bone metabolism is intimately involved in the genesis of this disease. Bone remodelling is tightly regulated by a molecular triad composed of OPG/RANK/RANKL. RANKL exists as 3 isoforms: RANKL1, 2, and 3. RANKL1 and 2 enhance osteoclastogenesis whereas RANKL3 inhibits this phenomenon. We previously reported that human OA subchondral bone osteoblasts can be discriminated into two subgroups according to their level of PGE2 [low (L) or high (H)]. Moreover, we also showed that L-OA osteoblasts express higher levels of total RANKL compared to H-OA osteoblasts. In this study, we investigated the level of membranous RANKL, comparing L- and H-OA subchondral bone osteoblasts, as well as its modulation by osteotropic factors. The impact of the modulation of RANKL1 and 3 on the membranous RANKL level was also studied. Methods: Gene expression was determined using real-time PCR for RANKL1 and semi-quantitative PCR for RANKL3. Membranous RANKL was measured by flow cytometry. The modulation of membranous RANKL and RANKL isoforms was monitored on the L- and H-OA osteoblasts and also following treatment with osteotropic factors, including vitamin D3 (50 nM), IL-1beta (100 pg/ml), TNF-alpha (5 ng/ml), PGE2 (500 nM), PTH (100 nM), IL-6 (10 ng/ml) and IL-17 (10 ng/ml). Results: Membranous RANKL levels were significantly increased in L-OA osteoblasts compared to normal (p<0.01) and H-OA (p<0.05). The gene expression level of the RANKL1 profile was reminiscent of the membranous RANKL level. Although RANKL3 gene expression was lower on the H-OA osteoblasts than on normal and L-OA osteoblasts (p<0.03), the overall outcome favoured RANKL1. Treatment with the tested factors showed a significant increase in membranous RANKL on the L-OA osteoblasts, with the exception of PTH and IL-17. Interestingly in this subpopulation, the RANKL3 gene expression level was significantly increased upon PTH and IL-17 treatment. No effect of the tested osteotropic factors was found on the H-OA. Conclusion: Our findings showed that the normal, L- and H-OA subchondral bone osteoblasts differentially express membranous RANKL and RANKL isoforms, and that treatment with osteotropic factors generally favours increased membranous localization of RANKL on L-OA compared to H-OA osteoblasts. This phenomenon appears to take place through differential modulation of each RANKL isoform.
    Full-text · Article · Sep 2008
    • "Real-Time PCR and Immunoblotting. Real-time PCR was performed as described previously (Bundey and Insel, 2003 ) using published primer sequences for prostanoid receptors: EP 1–4 and FP (Anthony et al., 2001); DP, TP, and IP (Sarrazin et al., 2001). Primers used for prostacyclin synthase detection were the following: 5-GCA- GACGTGTTTTGTTTGGA-3 and 5-TGTGAATGCAGAAGCA- GACC-3. "
    [Show abstract] [Hide abstract] ABSTRACT: Overexpression of adenylyl cyclase (AC) has been proposed as a potential gene therapy strategy to increase cAMP formation in cardiomyocytes and cardiac function in vivo. The impact of AC overexpression on endothelial cells, which will be traversed by genes delivered in vivo, has not been examined. Hence, the goal of the current study was to determine the consequence of AC overexpression on vascular endothelial cells in terms of G-protein-coupled receptor (GPCR) signaling and endothelial barrier function. We demonstrate that adenoviral-mediated gene transfer of AC6 in human umbilical vein endothelial cells preferentially enhances prostacyclin receptor (versus other GPCR)-stimulated cAMP synthesis and, in parallel, inhibits thrombin-stimulated increases in endothelial cell barrier function. Using multiple strategies, including prostacyclin receptor-targeted small interfering RNA, we identify that the enhancement of endothelial barrier function by AC6 overexpression is dependent on an autocrine/paracrine feedback pathway involving the release of prostacyclin and activation of prostacyclin receptors. AC6 overexpression in endothelial cells may have use as a means to enhance prostacyclin function and reduce endothelial barrier permeability.
    Article · Dec 2006
Show more