Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500-6505

School of Medicine, The University of Tokyo, 白山, Tōkyō, Japan
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 06/2001; 98(11):6500-5. DOI: 10.1073/pnas.101545198
Source: PubMed


Tumor-induced osteomalacia (TIO) is one of the paraneoplastic diseases characterized by hypophosphatemia caused by renal phosphate wasting. Because removal of responsible tumors normalizes phosphate metabolism, an unidentified humoral phosphaturic factor is believed to be responsible for this syndrome. To identify the causative factor of TIO, we obtained cDNA clones that were abundantly expressed only in a tumor causing TIO and constructed tumor-specific cDNA contigs. Based on the sequence of one major contig, we cloned 2,270-bp cDNA, which turned out to encode fibroblast growth factor 23 (FGF23). Administration of recombinant FGF23 decreased serum phosphate in mice within 12 h. When Chinese hamster ovary cells stably expressing FGF23 were s.c. implanted into nude mice, hypophosphatemia with increased renal phosphate clearance was observed. In addition, a high level of serum alkaline phosphatase, low 1,25-dihydroxyvitamin D, deformity of bone, and impairment of body weight gain became evident. Histological examination showed marked increase of osteoid and widening of growth plate. Thus, continuous production of FGF23 reproduced clinical, biochemical, and histological features of TIO in vivo. Analyses for recombinant FGF23 products produced by Chinese hamster ovary cells indicated proteolytic cleavage of FGF23 at the RXXR motif. Recent genetic study indicates that missense mutations in this RXXR motif of FGF23 are responsible for autosomal dominant hypophosphatemic rickets, another hypophosphatemic disease with similar features to TIO. We conclude that overproduction of FGF23 causes TIO, whereas mutations in the FGF23 gene result in autosomal dominant hypophosphatemic rickets possibly by preventing proteolytic cleavage and enhancing biological activity of FGF23.

Download full-text


Available from: Takeyoshi Yamashita
    • "FGF19 is produced in the ileum and regulates hepatic bile acid homeostasis (Inagaki et al., 2005), although it has also been implicated in the regulation of other systemic processes, such as carbohydrate and lipid metabolism (Tomlinson et al., 2002). FGF23 is a bone-derived factor (Shimada et al., 2001; Liu et al., 2003) that regulates phosphate homeostasis, mainly through its action on kidneys (Shimada et al., 2004). FGF21 is recognized as a powerful metabolic regulator. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor (FGF)-21 is an endocrine member of the FGF family with healthy effects on glucose and lipid metabolism. FGF21 reduces glycemia and lipidemia in rodent models of obesity and type 2 diabetes. In addition to its effects improving insulin sensitivity, FGF21 causes weight loss by increasing energy expenditure. Activation of the thermogenic activity of brown adipose tissue and promotion of the appearance of the so-called beige/brite type of brown adipocytes in white fat are considered the main mechanisms underlying the leaning effects of FGF21. Paradoxically, however, obesity in rodents and humans is characterized by high levels of FGF21 in the blood. Some degree of resistance to the actions of FGF21 has been proposed as part of the endocrine alterations in obesity. The resistance in adipose tissue from obese rodents and patients is likely attributable to abnormally low levels of the FGF co-receptor β-Klotho, required for FGF21 cellular action. However, native FGF21 and FGF21 derivatives retain their healthy metabolic and weight-loss effects when used as pharmacological agents to treat obese rodents and humans. FGF21 derivatives or molecules mimicking FGF21 action appear to be interesting candidates for the development of novel anti-obesity drugs designed to increase energy expenditure.
    No preview · Article · Sep 2015 · Molecular and Cellular Endocrinology
  • Source
    • "Interestingly, almost simultaneously, FGF23 was identified as the causative factor for both the inherited ADHR, and for an acquired form of hypophosphatemic rickets, termed tumorinduced osteomalacia (referred to as TIO or OOM) [35] [36]. TIO is a rare paraneoplastic syndrome mostly associated with mesenchymal tumors releasing FGF23. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Body phosphate homeostasis is regulated by a hormonal counter-balanced intestine-bone-kidney axis. The major systemic hormones involved in this axis are parathyroid hormone (PTH), 1,25-dihydroxyvitamin-D, and fibroblast growth factor-23 (FGF23). FGF23, produced almost exclusively by the osteocytes, is a phosphaturic hormone that plays a major role in regulation of the bone remodeling process. Remodeling composite components, bone mineralization and resorption cycles create a continuous influx-efflux loop of the inorganic phosphate (Pi) through the skeleton. This “bone Pi loop,” which is formed, is controlled by local and systemic factors according to phosphate homeostasis demands. Although FGF23 systemic actions in the kidney, and for the production of PTH and 1,25-dihydroxyvitamin-D are well established, its direct involvement in bone metabolism is currently poorly understood. This review presents the latest available evidence suggesting two aspects of FGF23 bone local activity: (a) Regulation of FGF23 production by both local and systemic factors. The suggested local factors include extracellular levels of Pi and pyrophosphate (PPi), (the Pi/PPi ratio), and another osteocyte-derived protein, sclerostin. In addition, 1,25-dihydroxyvitamin-D, synthesized locally by bone cells, may contribute to regulation of FGF23 production. The systemic control is achieved via PTH and 1,25-dihydroxyvitamin-D endocrine functions. (b) FGF23 acts as a local agent, directly affecting bone mineralization. We support the assumption that under balanced physiological conditions, sclerostin, by para- autocrine signaling, upregulates FGF23 production by the osteocyte. FGF23, in turn, acts as a mineralization inhibitor, by stimulating the generation of the major mineralization antagonist—PPi. © 2014 BioFactors, 2014
    Full-text · Article · Nov 2014 · BioFactors
  • Source
    • "FGF23 is normally inactivated by enzymatic cleavage, but FGF23 mutations in ADHR render the protein's cleavage site resistant to degradation, thereby elevating circulating FGF23 [9] [10]. In tumorinduced osteomalacia the tumor itself produces excess FGF23 and hypophosphatemia can be reversed by tumor removal [5]. A functional allelic variant rs7955866 (c.716CNT, p.T239M) in FGF23 has recently been linked to renal phosphate leak in calcium nephrolithiasis [11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor 23 (FGF23), a bone-derived hormone, participates in the hormonal bone-parathyroid-kidney axis, which is modulated by PTH, 1,25-dihydroxyvitamin D, plasma phosphate (Pi), and diet. Inappropriately high serum FGF23, seen in certain genetic and acquired disorders, results in urinary phosphate wasting and impaired bone mineralization. This study investigated the impact of FGF23 gene variation on phosphate homeostasis and bone health. The study included 183 children and adolescents (110 girls) aged 7-19 years (median 13.2 years). Urine and blood parameters of calcium and phosphate homeostasis were analyzed. Bone characteristics were quantified by DXA and peripheral quantitative computed tomography (pQCT). Genetic FGF23 variation was assessed by direct sequencing of coding exons and flanking intronic regions. Nine FGF23 polymorphisms were detected; three of them were common: rs3832879 (c.212-37insC), rs7955866 (c.716C > T, p.T239M) and rs11063112 (c.2185A > T). Four different haplotypes and six different diplotypes were observed among these three polymorphisms. The variations in FGF23 significantly associated with plasma PTH and urinary Pi excretion, even after adjusting for relevant covariates. FGF23 variations independently associated with total hip BMD Z-score, but not with other bone outcomes. In instrument analysis, genetic variance in FGF23 was considered a weak instrument as it only induced small variations in circulating FGF23, PTH and Pi concentrations (F statistic less than 10). The observed associations between FGF23 variations and circulating PTH, and Pi excretion and total hip BMD Z-scores suggest that FGF23 polymorphisms may play a role in mineral homeostasis and bone metabolism.
    Full-text · Article · Oct 2014 · Bone
Show more