Immunogenicity of an E1-deleted recombinant human adenovirus against rabies by different routes of administration

Impfstoffwerk Dessau-Tornau GmbH, PO Box 214, 06855 Rosslau, Germany.
Journal of General Virology (Impact Factor: 3.18). 10/2001; 82(Pt 9):2191-7. DOI: 10.1099/0022-1317-82-9-2191
Source: PubMed


The immunogenic properties of an E1-deleted, human adenovirus type 5 (Ad5) vaccine virus with activity against rabies were examined in mice, foxes and dogs using different routes of administration. NMRI mice received 10(5.8), 10(5.3), 10(4.3), 10(3.3) and 10(2.3) TCID(50) by peroral or intramuscular (i.m.) administration. Furthermore, six mice received 10(5.8) TCID(50) intracerebrally (i.c.). The construct elicited marked seroconversion in mice after oral administration. Immunoreactivity in mice was even more pronounced i.m. and i.c. After direct oral administration (10(8.0) TCID(50)) in foxes, six of eight animals developed rabies virus-neutralizing antibodies (VNA). All foxes immunized by direct injection (10(7.7) TCID(50)) in the membrane of the jejunum were shown to seroconvert. Pre-existing immunity against canine adenovirus did not hinder the development of rabies VNA after oral application of the construct (10(8.0) TCID(50)). Fox cubs (24-29 days old) born from rabies-immune vixens were shown to develop very high levels of rabies VNA after i.m. administration (10(8.0) TCID(50)), indicating that the immunogenicity of the construct could surpass maternally transferred immunity. In dogs, the construct (10(8.0) TCID(50)) induced a very strong immune response after i.m. administration. However, no immune response was detectable in dogs after direct oral administration (10(8.3) TCID(50)) or after endoscopic deposition in the smaller intestine (10(8.0) TCID(50)). Hence, it must be concluded that the construct is not suitable for oral vaccination of dogs against rabies.

Download full-text


Available from: Andreas Neubert, Jan 07, 2016
  • Source
    • "Oral immunization of dogs with live attenuated SAG-2 has been reported to produce only low level of VNA titers [20], making post-vaccination monitoring difficult. Attempts have also been made to develop oral vaccines for dogs using other recombinant viral vectors, such as human [63]or canine adenoviruses [64], [65], pseudorabies virus [66], and parapoxvirus [67]. However, these vaccines induce low VNA responses. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies indicated that recombinant rabies viruses (rRABV) expressing chemokines or cytokines (including GM-CSF) could enhance the immunogenicity by recruiting and/or activating dendritic cells (DC). In this study, bacterial flagellin was cloned into the RABV genome and recombinant virus LBNSE-Flagellin was rescued. To compare the immunogenicity of LBNSE-Flagellin with recombinant virus expressing GMCSF (LBNSE-GMCSF), mice were immunized with each of these rRABVs by intramuscular (i.m.) or oral route. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. The i.m.-immunized mice were bled at three weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with 50 LD50 challenge virus standard (CVS-24). Orally immunized mice were boosted after three weeks and then bled and challenged one week after the booster immunization. It was found that both LBNSE-GMCSF and LBNSE-Flagellin recruited/activated more DCs and B cells in the periphery, stimulated higher levels of adaptive immune responses (VNA), and protected more mice against challenge infection than the parent virus LBNSE in both the i.m. and the orally immunized groups. Together, these studies suggest that recombinant RABV expressing GM-CSF or flagellin are more immunogenic than the parent virus in both i.m. and oral immunizations.
    Full-text · Article · May 2013 · PLoS ONE
  • Source
    • "There were lower levels of humoral and cellular immune responses after the i.n. immunization compared to the i.m. immunization which is consistent with earlier findings [11], [26]–[28]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of preexisting immunity to adenoviruses in the majority of the human population might adversely impact the development of adaptive immune responses against adenovirus vector-based vaccines. To address this issue, we primed BALB/c mice either intranasally (i.n.) or intramuscularly (i.m.) with varying doses of wild type (WT) human adenovirus subtype 5 (HAd5). Following the development of immunity against HAd5, we immunized animals via the i.n. or i.m. route of inoculation with a HAd vector (HAd-HA-NP) expressing the hemagglutinin (HA) and nucleoprotein (NP) of A/Vietnam/1203/04 (H5N1) influenza virus. The immunogenicity and protection results suggest that low levels of vector immunity (<520 virus-neutralization titer) induced by priming mice with up to 10(7) plaque forming units (p.f.u.) of HAd-WT did not adversely impact the protective efficacy of the vaccine. Furthermore, high levels of vector immunity (approximately 1500 virus-neutralization titer) induced by priming mice with 10(8) p.f.u. of HAd-WT were overcome by either increasing the vaccine dose or using alternate routes of vaccination. A further increase in the priming dose to 10(9) p.f.u. allowed only partial protection. These results suggest possible strategies to overcome the variable levels of human immunity against adenoviruses, leading to better utilization of HAd vector-based vaccines.
    Full-text · Article · Mar 2012 · PLoS ONE
  • Source
    • "Some of these replication competent vectors are based on human pathogens and are therefore also not without risks, especially in view of immunocompromised persons. Unfortunately, replication-deficient constructs like an E1-deleted human adenovirus type-5 expressing the rabies virus glycoprotein did not induce detectable rabies VNA after oral administration [25]. The balance that must be attained is constructing a viral delivery system that is fully attenuated to render it safe and prevent replication and yet have sufficient viral characteristics that allow uptake into permissive cells and protein production to induce an immune response. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Different approaches have been applied to develop highly attenuated rabies virus vaccines for oral vaccination of mesocarnivores. One prototype vaccine construct is SAD dIND1, which contains a deletion in the P-gene severely limiting the inhibition of type-1 interferon induction. Immunogenicity studies in foxes and skunks were undertaken to investigate whether this highly attenuated vaccine would be more immunogenic than the parental SAD B19 vaccine strain. In foxes, it was demonstrated that SAD dIND1 protected the animals against a rabies infection after a single oral dose, although virus neutralizing antibody titres were lower than in foxes orally vaccinated with the SAD B19 virus as observed in previous experiments. In contrast, skunks receiving 10(7.5) FFU SAD dIND1 did not develop virus neutralizing antibodies and were not protected against a subsequent rabies infection.
    Full-text · Article · Sep 2011
Show more