Article

Human disease-causing NOG missense mutations: Effects on noggin secretion, dimer formation, and bone morphogenetic protein binding

Department of Molecular and Cell Biology , University of California, Berkeley, Berkeley, California, United States
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 10/2001; 98(20):11353-8. DOI: 10.1073/pnas.201367598
Source: PubMed

ABSTRACT

Secreted noggin protein regulates bone morphogenetic protein activity during development. In mice, a complete loss of noggin protein leads to multiple malformations including joint fusion, whereas mice heterozygous for Nog loss-of-function mutations are normal. In humans, heterozygous NOG missense mutations have been found in patients with two autosomal dominant disorders of joint development, multiple synostosis syndrome (SYNS1) and a milder disorder proximal symphalangism (SYM1). This study investigated the effect of one SYNS1 and two SYM1 disease-causing missense mutations on the structure and function of noggin. The SYNS1 mutation abolished, and the SYM1 mutations reduced, the secretion of functional noggin dimers in transiently transfected COS-7 cells. Coexpression of mutant noggin with wild-type noggin, to resemble the heterozygous state, did not interfere with wild-type noggin secretion. These data indicate that the human disease-causing mutations are hypomorphic alleles that reduce secretion of functional dimeric noggin. Therefore, we conclude that noggin has both species-specific and joint-specific dosage-dependent roles during joint formation. Surprisingly, in contrast to the COS-7 cell studies, the SYNS1 mutant was able to form dimers in Xenopus laevis oocytes. This finding indicates that there also exist species-specific differences in the ability to process mutant noggin polypeptides.

Download full-text

Full-text

Available from: Richard M Harland
  • Source
    • "We then examined whether the TGF-β or BMP ligands were required for the activation of their respective signaling pathways in cells treated with recombinant Wnt3a, by using ligand traps in the form of a TGF-β neutralizing antibody or noggin, a secreted inhibitor of BMPs (Marcelino et al., 2001). Incubation of recombinant Wnt3a or TGF-β (control) with the TGF-β neutralizing antibody for 1 h prior to treating cells was sufficient to block the phosphorylation of Smad3 (Figure 4A). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Wnt ligands are a family of secreted signaling proteins which play key roles in a number of cellular processes under physiological and pathological conditions. Wnts bind to their membrane receptors and initiate a signaling cascade which leads to the nuclear localization and transcriptional activity of β-catenin. The development of purified recombinant Wnt ligands has greatly aided in our understanding of Wnt signaling and its functions in development and disease. In the current study, we identified non-Wnt related signaling activities which were present in commercially available preparations of recombinant Wnt3a. Specifically, we found that treatment of cultured fibroblasts with recombinant Wnt3a induced immediate activation of TGF-β and BMP signaling and this activity appeared to be independent of the Wnt ligand itself. Therefore, while purified recombinant Wnt ligands continue to be a useful tool for studying this signaling pathway, one must exercise a degree of caution when analyzing the results of experiments that utilize purified recombinant Wnt ligands. This article is protected by copyright. All rights reserved
    Full-text · Article · Sep 2015 · Journal of Cellular Biochemistry
  • Source
    • "According to a previous in vitro study, NOG with p.P35R mutation has a diminished affinity for BMP-7 due to reduced hydrophobic interaction [19]. Each noggin with mutation of p.G189C, p.W217G, or p.P223L is either poorly or not secreted in cultured mammalian cells [20], indicating a defect in protein folding and maturation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The access of bone morphogenetic protein (BMP) to the BMP receptors on the cell surface is regulated by its antagonist noggin, which binds to heparan-sulfate proteoglycans on the cell surface. Noggin is encoded by NOG and mutations in the gene are associated with aberrant skeletal formation, such as in the autosomal dominant disorders proximal symphalangism (SYM1), multiple synostoses syndrome, Teunissen-Cremers syndrome, and tarsal-carpal coalition syndrome. NOG mutations affecting a specific function may produce a distinct phenotype. In this study, we investigated a Japanese pedigree with SYM1 and conductive hearing loss and found that it carried a novel heterozygous missense mutation of NOG (c. 406C>T; p.R136C) affecting the heparin-binding site of noggin. As no mutations of the heparin-binding site of noggin have previously been reported, we investigated the crystal structure of wild-type noggin to investigate molecular mechanism of the p.R136C mutation. We found that the positively charged arginine at position 136 was predicted to be important for binding to the negatively charged heparan-sulfate proteoglycan (HSPG). An in silico docking analysis showed that one of the salt bridges between noggin and heparin disappeared following the replacement of the arginine with a non-charged cysteine. We propose that the decreased binding affinity of NOG with the p.R136C mutation to HSPG leads to an excess of BMP signaling and underlies the SYM1 and conductive hearing loss phenotype of carriers.
    Full-text · Article · Apr 2014 · Biochemical and Biophysical Research Communications
  • Source
    • "However, the anti-GFP antibody revealed only minor amounts (about 6%) of BMP7-2A-Venus and BMP2-2A-Venus full-length proteins but no Noggin-2A-Venus fusion. This suggests that the 53-kDa immunosignal for Noggin in the supernatant represents Noggin dimers that can be detected under low stringent reducing conditions during electrophoresis [34]. Thus, the ribosomal skipping and the secretion of the target proteins encoded by the rAAVs were very efficient. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone morphogenic proteins (BMPs) promote the survival of neurons, suggesting a therapeutic application of BMPs in the treatment of acute and chronic neurodegenerative disorders. However, the application of recombinant BMPs in vivo is limited by their short half-life. To provide a continuous supply for functionally active BMPs, we expressed BMP7, BMP2 and the BMP inhibitor Noggin under the control of rAAV vectors in vivo. For visual control of rAAV-mediated BMP (v-BMP) expression we fused the secreted morphogenic polypeptides and the fluorescent reporter protein Venus via the 'ribosomal skip' promoting 2A peptide-bridge. In primary cortical neurons, the rAAV-expressed morphogenic polypeptides were efficiently released from the 2A-Venus fusion precursors, were secreted, correctly processed and functionally active as shown by their effects on Smad phosphorylation in HeLa cells and in primary neurons, by the protection of v-BMP7-transduced primary cortical neurons against oxidative stress, and by the activation of BMP responsive GFP in v-BMP2 transduced reporter mice. In the stroke model of middle cerebral artery occlusion rAAV-transduced v-BMP7 reduced the infarct size in mice. Polycistronic rAAV vectors encoding secreted polypeptides and 2A-linked reporter proteins are potential novel therapeutic tools for the treatment of neurological and neurodegenerative diseases. Using this technique we documented that rAAV delivery of BMP7 reduced ischemic cell death in mice.
    Full-text · Article · Mar 2014 · BMC Neuroscience
Show more