Insights into the Mechanisms of Ifosfamide Encephalopathy: Drug Metabolites Have Agonistic Effects on α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA)/Kainate Receptors and Induce Cellular Acidification in Mouse Cortical Neurons

Institute of Physiology and Laboratory of Neurological Research, Department of Neurology, University of Lausanne Medical School, Lausanne, Switzerland.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.97). 01/2002; 299(3):1161-8.
Source: PubMed


Therapeutic value of the alkylating agent ifosfamide has been limited by major side effects including encephalopathy. Although the underlying biochemical processes of the neurotoxic side effects are still unclear, they could be attributed to metabolites rather than to ifosfamide itself. In the present study, the effects of selected ifosfamide metabolites on indices of neuronal activity have been investigated, in particular for S-carboxymethylcysteine (SCMC) and thiodiglycolic acid (TDGA). Because of structural similarities of SCMC with glutamate, the Ca(2+)(i) response of single mouse cortical neurons to SCMC and TDGA was investigated. SCMC, but not TDGA, evoked a robust increase in Ca(2+)(i) concentration that could be abolished by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), but only partly diminished by the N-methyl-D-aspartate receptor antagonist 10,11-dihydro-5-methyl-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK=801). Cyclothiazide (CYZ), used to prevent AMPA/kainate receptor desensitization, potentiated the response to SCMC. Because activation of AMPA/kainate receptors is known to induce proton influx, the intracellular pH (pH(i)) response to SCMC was investigated. SCMC caused a concentration-dependent acidification that was amplified by CYZ. Since H(+)/monocarboxylate transporter (MCT) activity leads to similar cellular acidification, we tested its potential involvement in the pH(i) response. Application of the lactate transport inhibitor quercetin diminished the pH(i) response to SCMC and TDGA by 43 and 51%, respectively, indicating that these compounds may be substrates of MCTs. Taken together, this study indicates that hitherto apparently inert ifosfamide metabolites, in particular SCMC, activate AMPA/kainate receptors and induce cellular acidification. Both processes could provide the biochemical basis of the observed ifosfamide-associated encephalopathy.

1 Read
  • Source
    • "Intracellular pH (pHi) was measured in single cells on glass coverslips after loading the cells with the pH sensitive fluorescent dye 2′,7′-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF-AM; Teflabs, Austin, TX) as described previously [21]. Cell loading was performed at room temperature for 10 min using 1 µM BCECF-AM in a HEPES-buffered balanced solution (see composition below). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM). To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM) or switched to different glucose concentrations (0.5 or 10 mM). None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX) an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism.
    Full-text · Article · Aug 2013 · PLoS ONE
  • Source
    • "SCMC, but not TDGA, was reported to activate AMPA/kainate receptors (non-NMDA glutamate receptors) on single mouse cortical neurons in vitro and to induce cellular acidification. These properties were believed to provide a basis for ifosfamide encephalopathy (Chatton et al., 2001). Subsequently, it was reported that SCMC was formed directly in mouse brain after the administration of IFO, lending support to the SCMC theory of ifosfamide encephalopathy (Lerch et al., 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The glycine deportation system is an essential component of glycine catabolism in man whereby 400 to 800mg glycine per day are deported into urine as hippuric acid. The molecular escort for this deportation is benzoic acid, which derives from the diet and from gut microbiota metabolism of dietary precursors. Three components of this system, involving hepatic and renal metabolism, and renal active tubular secretion help regulate systemic and central nervous system levels of glycine. When glycine levels are pathologically high, as in congenital nonketotic hyperglycinemia, the glycine deportation system can be upregulated with pharmacological doses of benzoic acid to assist in normalization of glycine homeostasis. In congenital urea cycle enzymopathies, similar activation of the glycine deportation system with benzoic acid is useful for the excretion of excess nitrogen in the form of glycine. Drugs which can substitute for benzoic acid as substrates for the glycine deportation system have adverse reactions that may involve perturbations of glycine homeostasis. The cancer chemotherapeutic agent ifosfamide has an unacceptably high incidence of encephalopathy. This would appear to arise as a result of the production of toxic aldehyde metabolites which deplete ATP production and sequester NADH in the mitochondrial matrix, thereby inhibiting the glycine deportation system and causing de novo glycine synthesis by the glycine cleavage system. We hypothesize that this would result in hyperglycinemia and encephalopathy. This understanding may lead to novel prophylactic strategies for ifosfamide encephalopathy. Thus, the glycine deportation system plays multiple key roles in physiological and neurotoxicological processes involving glycine.
    Full-text · Article · May 2012 · Pharmacology [?] Therapeutics
  • Source
    • "Dye emissions were observed at 580–620 nm (CR and JC-1 aggregates ) and 500–560 nm (JC-1 monomers). Intracellular pH measurement was performed using the pH-sensitive dye BCECF-AM as described previously (Chatton et al., 2001), in some cases co-loaded with CR. ATP levels were assessed indirectly by measuring intracellular free Mg 21 using Magnesium Green AM as described previously (Chatton and Magistretti, 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria in intact cells maintain low Na(+) levels despite the large electrochemical gradient favoring cation influx into the matrix. In addition, they display individual spontaneous transient depolarizations. The authors report here that individual mitochondria in living astrocytes exhibit spontaneous increases in their Na(+) concentration (Na(mit)(+) spiking), as measured using the mitochondrial probe CoroNa Red. In a field of view with approximately 30 astrocytes, up to 1,400 transients per minute were typically detected under resting conditions. Na(mit)(+) spiking was also observed in neurons, but was scarce in two nonneural cell types tested. Astrocytic Na(mit)(+) spikes averaged 12.2 +/- 0.8 s in duration and 35.5 +/- 3.2 mM in amplitude and coincided with brief mitochondrial depolarizations; they were impaired by mitochondrial depolarization and ruthenium red pointing to the involvement of a cation uniporter. Na(mit)(+) spiking activity was significantly inhibited by mitochondrial Na(+)/H(+) exchanger inhibition and sensitive to cellular pH and Na(+) concentration. Ca(2+) played a permissive role on Na(mit)(+) spiking activity. Finally, the authors present evidence suggesting that Na(mit)(+) spiking frequency was correlated with cellular ATP levels. This study shows that, under physiological conditions, individual mitochondria in living astrocytes exhibit fast Na(+) exchange across their inner membrane, which reveals a new form of highly dynamic and localized functional regulation.
    Full-text · Article · Feb 2008 · Glia
Show more