Liu, J., Killilea, D. & Ames, B. N. Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc. Natl Acad. Sci. USA 99, 1876-1881

Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 03/2002; 99(4):1876-81. DOI: 10.1073/pnas.261709098
Source: PubMed


We test whether the dysfunction with age of carnitine acetyltransferase (CAT), a key mitochondrial enzyme for fuel utilization, is due to decreased binding affinity for substrate and whether this substrate, fed to old rats, restores CAT activity. The kinetics of CAT were analyzed by using the brains of young and old rats and of old rats supplemented for 7 weeks with the CAT substrate acetyl-l-carnitine (ALCAR) and/or the mitochondrial antioxidant precursor R-alpha-lipoic acid (LA). Old rats, compared with young rats, showed a decrease in CAT activity and in CAT-binding affinity for both substrates, ALCAR and CoA. Feeding ALCAR or ALCAR plus LA to old rats significantly restored CAT-binding affinity for ALCAR and CoA, and CAT activity. To explore the underlying mechanism, lipid peroxidation and total iron and copper levels were assayed; all increased in old rats. Feeding old rats LA or LA plus ALCAR inhibited lipid peroxidation but did not decrease iron and copper levels. Ex vivo oxidation of young-rat brain with Fe(II) caused loss of CAT activity and binding affinity. In vitro oxidation of purified CAT with Fe(II) inactivated the enzyme but did not alter binding affinity. However, in vitro treatment of CAT with the lipid peroxidation products malondialdehyde or 4-hydroxy-nonenal caused a decrease in CAT-binding affinity and activity, thus mimicking age-related change. Preincubation of CAT with ALCAR or CoA prevented malondialdehyde-induced dysfunction. Thus, feeding old rats high levels of key mitochondrial metabolites can ameliorate oxidative damage, enzyme activity, substrate-binding affinity, and mitochondrial dysfunction.

Download full-text


Available from: David W Killilea, Jan 18, 2015
  • Source
    • "For example, mitochondrial biogenesis increases in muscle cells upon exercise (Holloszy, 1967). Conversely, research has shown that as mammals age, there is a general decline in both mitochondrial mass and function (Yan and Sohal, 1998; Liu et al., 2002; Chistiakov et al., 2014). There is a wide range of clinical conditions that result from mitochondrial dysfunction, including muscular disorders, cardiomyopathy, diabetes, cancer, deafness, lactic acidosis, and skeletal myopathy (Vafai and Mootha, 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory Bowel Disease (IBD) represents a group of idiopathic disorders characterized by chronic or recurring inflammation of the gastrointestinal tract. While the exact etiology of disease is unknown, IBD is recognized to be a complex, multifactorial disease that results from an intricate interplay of genetic predisposition, an altered immune response, changes in the intestinal microbiota, and environmental factors. Together, these contribute to a destruction of the intestinal epithelial barrier, increased gut permeability, and an influx of immune cells. Given that most cellular functions as well as maintenance of the epithelial barrier is energy-dependent, it is logical to assume that mitochondrial dysfunction may play a key role in both the onset and recurrence of disease. Indeed several studies have demonstrated evidence of mitochondrial stress and alterations in mitochondrial function within the intestinal epithelium of patients with IBD and mice undergoing experimental colitis. Although the hallmarks of mitochondrial dysfunction, including oxidative stress and impaired ATP production are known to be evident in the intestines of patients with IBD, it is as yet unclear whether these processes occur as a cause of consequence of disease. We provide a current review of mitochondrial function in the setting of intestinal inflammation during IBD.
    Full-text · Article · Oct 2015 · Frontiers in Cell and Developmental Biology
  • Source
    • "Damage to mitochondria is primarily caused by ROS generated by the mitochondria themselves [11] [12], in particular by complexes I and III of the electron respiratory chain [13]. Direct damage to mitochondrial proteins decreases their affinity for substrates or coenzymes and, thereby, decreases their function [14]. ROS represented the mechanism of mitochondrial dysfunction during inflammation . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are critical regulator of cell metabolism; thus, mitochondrial dysfunction is associated with many metabolic disorders. Defects in oxidative phosphorylation, ROS production, or mtDNA mutations are the main causes of mitochondrial dysfunction in many pathological conditions such as IR/diabetes, metabolic syndrome, cardiovascular diseases, and cancer. Thus, targeting mitochondria has been proposed as therapeutic approach for these conditions, leading to the development of small molecules to be tested in the clinical scenario. Here we discuss therapeutic interventions to treat mitochondrial dysfunction associated with two major metabolic disorders, metabolic syndrome, and cancer. Finally, novel mechanisms of regulation of mitochondrial function are discussed, which open new scenarios for mitochondria targeting.
    Full-text · Article · Mar 2014 · The Scientific World Journal
  • Source
    • "Given that mitochondria-centered dysfunction was an essential feature of unloading, we developed a nutrient formula designed to synergistically promote mitochondrial biogenesis, improve mitochondrial dysfunction, and balance oxidative stress using compounds whose mitochondrial beneficial effects have been well documented by our laboratory and other laboratories. For example, LA plus ALCAR, cofactors located within mitochondria, have been shown to improve mitochondrial metabolism and integrity by both enhancing acetyltransferase substrate-binding affinity and activity and ameliorating oxidative stress [40] [42]. HT, a natural polyphenol compound from olive oil, activates PGC-1α-mediated mitochondrial biogenesis in retinal pigment epithelial cells, adipocytes, and muscles [24] [25] [43]; CoQ 10 , a mitochondrial electron transporter, promotes mitochondrial function when applied to Goto–Kakizaki rats [26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously found that mitochondrial dysfunction occurs in disuse-induced muscle atrophy. However, the mitochondrial remodeling that occurs during reloading, an effective approach for rescuing unloading-induced atrophy, remains to be investigated. In the present study, using a rat model of 3-week hindlimb unloading plus 7-day reloading, we found that reloading protected mitochondria against dysfunction, including mitochondrial loss, abnormal mitochondrial morphology, inhibited biogenesis, and activation of mitochondria-associated apoptotic signaling. Interestingly, a combination of nutrients, including alpha-lipoic acid, acetyl-L- carnitine, hydroxytyrosol, and CoQ10, which we designed to target mitochondria, was able to efficiently rescue muscle atrophy via a reloading-like action. It is suggested that reloading ameliorates skeletal muscle atrophy through the activation of mitochondrial biogenesis and the amelioration of oxidative stress. Nutrient administration acted similarly in unloaded rats. Here, the study of mitochondrial remodeling in rats during unloading and reloading provides a more detailed picture of the pathology of muscle atrophy.
    Full-text · Article · Jan 2014 · Free Radical Biology and Medicine
Show more