Article

Inhibitory effects of serotonin on transient outward potassium current in rat ventricular myocytes

Department of Pharmacology, The Fourth Military Medical University, Xi-an 710032, China.
Acta Pharmacologica Sinica (Impact Factor: 2.91). 08/2002; 23(7):617-22.
Source: PubMed

ABSTRACT

To study the effects of serotonin (5-hydroxy-tryptamine, 5-HT) on transient outward potassium current (I(to)) and elucidate its mechanism in rat ventricular myocytes.
I(to) was recorded using the conventional whole cell patch-clamp techniques.
I(to) density in normal myocytes was similar to that in norepinephrine-induced hypertrophic myocytes. 5-HT depressed I(to) in a concentration-dependent manner with the half-maximal inhibitory concentration of (40+/-5) micromol/L and (38+/-7) micromol/L in normal and hypertrophic ventricular myocytes respectively. Mianserin (5-HT2 receptor antagonist), compound 48/80 (phospholipase C antagonist), and chelerythrine chloride (protein kinase C antagonist) reversed the inhibitory effects of 5-HT on I(to), while phorbol 12-myristate 13-acetate (protein kinase C agonist) enhanced the inhibitory effect of 5-HT on I(to) in normal myocytes.
5-HT markedly inhibits I(to) in rat ventricular myocytes. The putative signal pathway is that 5-HT activates phospholipase C, which causes inositol phospholipid hydrolysis. The activation of downstream signal molecule, protein kinase C, phosphorates substrate target proteins, which leads to inhibition of I(to) in ventricular myocytes.

Full-text preview

Available from: chinaphar.com
  • [Show abstract] [Hide abstract]
    ABSTRACT: To study the effects of tumor necrosis factor-alpha (TNF-alpha) on calcium movement in rat ventricular myocytes. Intracellular free Ca2+ concentration was measured with calcium fluorescent probe Fluo-3/AM and laser confocal microscope. L-type calcium current (ICa,L) was recorded with the whole-cell configuration of the patch-clamp techniques. At 2, 20 and 200 microg/L, TNF-alpha was found to increase intracellular free Ca2+ concentration in a dose-dependent manner illustrated by the increment of calcium fluorescence density with laser confocal microscope. Nicardipine 0.5 micromol/L slightly attenuated TNF-alpha-induced response. When the cardiac myocytes were exposed to caffeine (100 mmol/L) for 30 min, TNF-alpha failed to induce any change of intracellular free calcium. However, it was found that TNF-alpha inhibited I(Ca,L) in whole-cell patch-clamp experiments. At 2, 20, and 200 microg/L, TNF-alpha decreased peak I(Ca,L) by 3.9 % (-5.1 pA/pF+/-0.3 pA/pF vs -4.9 pA/pF+/-0.2 pA/pF, n=9, P>0.05), 15.7 % (-5.1 pA/pF+/-0.3 pA/pF vs -4.3 pA/pF+/-0.3 pA/pF, n=9, P<0.05) and 19.6 % (-5.1 pA/pF+/-0.3 pA/pF vs -4.1 pA/pF+/-0.4 pA/pF, n=9, P<0.01), respectively. It shifted the steady-state inactivation curve of I(Ca,L) to the left (V1/2 shifted from -28.7 mV+/-0.3 mV to -37.8 mV+/-1.4 mV, n=7, P<0.05), while it took no effects on steady-state activation and recovery from inactivation. TNF-alpha inhibited I(Ca,L) in rat ventricular myocytes, while increasing the intercellular free Ca2+ level due to the release of Ca2+ from intracellular stores.
    No preview · Article · Dec 2003 · Acta Pharmacologica Sinica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rats with congestive heart failure (CHF) develop ventricular inotropic responsiveness to serotonin (5-HT), mediated through 5-HT(2A) and 5-HT(4) receptors. Human ventricle is similarly responsive to 5-HT through 5-HT(4) receptors. We studied isolated ventricular cardiomyocytes to clarify the effects of 5-HT on intracellular Ca(2+) handling. Left-ventricular cardiomyocytes were isolated from male Wistar rats 6 wk after induction of postinfarction CHF. Contractile function and Ca(2+) transients were measured in field-stimulated cardiomyocytes, and L-type Ca(2+) current (I(Ca,L)) and sarcoplasmic reticulum (SR) Ca(2+) content were measured in voltage-clamped cells. Protein phosphorylation was measured by Western blotting or phosphoprotein gel staining. 5-HT(4)- and 5-HT(2A)-receptor stimulation induced a positive inotropic response of 33 and 18% (both P < 0.05) and also increased the Ca(2+) transient (44 and 6%, respectively; both P < 0.05). I(Ca,L) and SR Ca(2+) content increased only after 5-HT(4)-receptor stimulation (57 and 65%; both P < 0.05). Phospholamban serine(16) (PLB-Ser(16)) and troponin I phosphorylation increased by 26 and 13% after 5-HT(4)-receptor stimulation (P < 0.05). 5-HT(2A)-receptor stimulation increased the action potential duration and did not significantly change the phosphorylation of PLB-Ser(16) or troponin I, but it increased myosin light chain 2 (MLC2) phosphorylation. In conclusion, the positive inotropic response to 5-HT(4) stimulation results from increased I(Ca,L) and increased phosphorylation of PLB-Ser(16), which increases the SR Ca(2+) content. 5-HT(4) stimulation is thus, like beta-adrenoceptor stimulation, possibly energetically unfavorable in CHF. 5-HT(2A)-receptor stimulation, previously studied in acute CHF, induces a positive inotropic response also in chronic CHF, probably mediated by MLC2 phosphorylation.
    No preview · Article · Oct 2007 · AJP Heart and Circulatory Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1. Serotonin (5-hydroxytryptamine; 5-HT) plays important roles in the development of cardiac hypertrophy via activation of 5-HT receptors. The aim of the present study was to investigate the role of 5-HT2B receptors in the development of cardiomyocyte apoptosis and hypertrophy associated with noradrenaline (NA) overload. 2. Cardiac hypertrophy was induced in rats by intraperitoneal injection of 1.5 mg/kg NA for 4 weeks. Starting from Day 15, 5-HT2B receptor antagonist SB 204741 (i.p., 0.5 or 2 mg/kg) or SDZ SER 082 (i.p., 1 mg/kg) was injected twice daily for another 14 days. Whole-cell patch-clamp techniques were used to record ionic currents in freshly isolated ventricular cardiomyocytes. Western blot and terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL) assays were used to assess myocardial apoptosis. 3. Expression of 5-HT2B receptors was enhanced in the hypertrophic left ventricle induced by NE overload in vivo. The 5-HT2B receptor antagonist SB 204741 partially reversed cardiac hypertrophy induced by NE overload (P < 0.05) and decreased L-type calcium currents in ventricular cardiomyocytes (P < 0.05). In addition, SB 204741 notably attenuated myocardial apoptosis, as evidenced by downregulation of Bax and caspase 3 (P < 0.05) and upregulation of the anti-apoptotic Bcl-2 protein (P < 0.05). 4. In conclusion, the data suggest an involvement of 5-HT2B receptors in the generation of apoptotic events associated with cardiac remodelling during increased adrenergic stimulation.
    No preview · Article · Mar 2010 · Clinical and Experimental Pharmacology and Physiology