The role of FLT3 in hematopoiesis and leukemia

Harvard University, Cambridge, Massachusetts, United States
Blood (Impact Factor: 10.45). 10/2002; 100(5):1532-42. DOI: 10.1182/blood-2002-02-0492
Source: PubMed


FLT3 is a receptor tyrosine kinase expressed by immature hematopoietic cells and is important for the normal development of stem cells and the immune system. The ligand for FLT3 is expressed by marrow stromal cells and other cells and synergizes with other growth factors to stimulate proliferation of stem cells, progenitor cells, dendritic cells, and natural killer cells. Mutations of FLT3 have been detected in about 30% of patients with acute myelogenous leukemia and a small number of patients with acute lymphocytic leukemia or myelodysplastic syndrome. Patients with FLT3 mutations tend to have a poor prognosis. The mutations most often involve small tandem duplications of amino acids within the juxtamembrane domain of the receptor and result in constitutive tyrosine kinase activity. Expression of a mutant FLT3 receptor in murine marrow cells results in a lethal myeloproliferative syndrome and preliminary studies suggest that mutant FLT3 cooperates with other leukemia oncogenes to confer a more aggressive phenotype. Taken together, these results suggest that FLT3 is an attractive therapeutic target for kinase inhibitors or other approaches for patients with mutations of this gene.

Download full-text


Available from: James D Griffin, Jan 21, 2014
  • Source
    • "c-MYC is frequently activated in acute myeloid leukemia (AML), and plays an important role in the induction of leukemogenesis [3, 4]. High c-MYC expression, a result of activating mutations in the Flt3 receptor tyrosine kinase, correlates with poor prognosis in AML [5, 6]. c-MYC is also frequently reported to be upregulated in acute lymphoblastic leukemia (ALL), however, the correlation of c-MYC expression with clinical features of ALL has not been fully described. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased expression of c-MYC is observed in both Acute Myeloid Leukemia (AML) and T-cell Acute Lymphoblastic Leukemia (T-ALL). MYC binding protein 2 (MYCBP2) is a probable E3 ubiquitin ligase and its function in leukemia is unknown. IKZF1 deletion is associated with the development and poor outcome of ALL. Here, we observed significant high c-MYC expression and low MYCBP2 expression in adult ALL patients. Patients with high c-MYC expression and/or low MYCBP2 expression had higher WBC counts and a higher percentage of CD34+ or CD33+ cells, as well as splenomegaly, liver infiltration, higher BM blasts, and lower CR rate. Ikaros bound to the regulatory regions of c-MYC and MYCBP2, suppressed c-MYC and increased MYCBP2 expression in ALL cells. Expression of c-MYC mRNA was significantly higher in patients with IKZF1 deletion; conversely MYCBP2 mRNA expression was significantly lower in those patients. A CK2 inhibitor, which acts as an Ikaros activator, also suppressed c-MYC and increased MYCBP2 expression in an Ikaros (IKZF1) dependent manner in the ALL cells. In summary, our data indicated the correlation of high c-MYC expression, low MYCBP2 expression and high c-MYC plus low MYCBP2 expression with high-risk factors and proliferation markers in adult ALL patients. Our data also revealed an oncogenic role for an Ikaros/MYCBP2/c-MYC axis in adult ALL, providing a mechanism of target therapies that activate Ikaros in adult ALL.
    Preview · Article · Oct 2015 · Oncotarget
  • Source
    • "Another report suggests that over-expression of HOXB6 in NB4 cells or in HL60 cells caused inhibition of the granulocytic and monocytic maturation, respectively [12]. The type III receptor tyrosine kinase FLT3 is expressed in almost all AML, and about 35% of AML patients carry an oncogenic FLT3 mutation [14]. Among the several mutations that have been found, the internal tandem duplication (ITD) of the sequence that encodes the juxtamembrane domain is the most common mutation in FLT3. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute myeloid leukemia (AML) is a heterogeneous aggressive disease and the most common form of adult leukemia. Mutations in the type III receptor tyrosine kinase FLT3 are found in more than 30% of AML patients. Drugs against FLT3 have been developed for the treatment of AML, but they lack specificity, show poor response and lead to the development of a resistant phenotype upon treatment. Therefore, a deeper understanding of FLT3 signaling will facilitate identification of additional pharmacological targets in FLT3-driven AML. In this report, we identify HOXB2 and HOXB3 as novel regulators of oncogenic FLT3-ITD-driven AML. We show that HOXB2 and HOXB3 expression is upregulated in a group of AML patients carrying FLT3-ITD. Overexpression of HOXB2 or HOXB3 in mouse pro-B cells resulted in decreased FLT3-ITD-dependent cell proliferation as well as colony formation and increased apoptosis. Expression of HOXB2 or HOXB3 resulted in a significant decrease in FLT3-ITD-induced AKT, ERK, p38 and STAT5 phosphorylation. Our data suggest that HOXB2 and HOXB3 act as tumor suppressors in FLT3-ITD driven AML.
    Full-text · Article · Oct 2015 · Biochemical and Biophysical Research Communications
  • Source
    • "Genetic evaluation plays an integral role in the classification of AML [1] [2] [3]. Approximately 50% of patients with de novo AML have cytogenetics abnormalities. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. We hereby describe what we believe to be the first reported case of t (14; 15) (q32; q13) associated with acute myeloid leukemia (AML). Methods. PubMed, Embase, and OVID search engines were used to review the related literature and similar published cases. Case. A47-year-old female presented in December 2011 with AML (acute myelomonocytic leukemia) with normal cytogenetics; molecular testing revealed FLT-3 internal tandem duplication (ITD) mutation, while no mutations involving FLT3 D385/I836, NPM1 exon 12, or KIT exons 8 and 17 were detected. She was induced with 7 + 3 (cytarabine + idarubicin) and achieved complete remission after a second induction with high-dose cytarabine (HiDAC) followed by uneventful consolidation. She presented 19 months after diagnosis with relapsed disease. Of note, at relapse cytogenetic analysis revealed t (14; 15) (q32; q13), while FLT-3 analysis showed a codon D835 mutation (no ITD mutation was detected). She proved refractory to the initial clofarabine-based regimen, so FLAG-idarubicin then was used. She continued to have persistent disease, and she was discharged on best supportive care. Conclusion. Based on this single case of AML with t (14; 15) (q32; q13), this newly reported translocation may be associated with refractory disease.
    Full-text · Article · Nov 2014
Show more