No evidence for inhibition of ENaC through CFTR-mediated release of ATP

Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 10/2002; 1565(1):17-28. DOI: 10.1016/S0005-2736(02)00502-3
Source: PubMed


Both purinergic stimulation and activation of cystic fibrosis transmembrane conductance regulator (CFTR) increases Cl(-) secretion and inhibit amiloride-sensitive Na(+) transport. CFTR has been suggested to conduct adenosine 5'-triphosphate (ATP) or to control ATP release to the luminal side of epithelial tissues. Therefore, a possible mechanism on how CFTR controls the activity of epithelial Na(+) channels (ENaC) could be by release of ATP or uridine 5'-triphosphate (UTP), which would then bind to P2Y receptors and inhibit ENaC. We examined this question in native tissues from airways and colon and in Xenopus oocytes. Inhibition of amiloride-sensitive transport by both CFTR and extracellular nucleotides was observed in colon and trachea. However, nucleotides did not inhibit ENaC in Xenopus oocytes, even after coexpression of P2Y(2) receptors. Using different tools such as hexokinase, the P2Y inhibitor suramin or the Cl(-) channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), we did not detect any role of a putative ATP secretion in activation of Cl(-) transport or inhibition of amiloride sensitive short circuit currents by CFTR. In addition, N(2),2'-O-dibutyrylguanosine 3',5'-cyclic monophosphate (cGMP) and protein kinase G (PKG)-dependent phosphorylation or the nucleoside diphosphate kinase (NDPK) do not seem to play a role for the inhibition of ENaC by CFTR, which, however, requires the presence of extracellular Cl(-).

Download full-text


Available from: Rainer Schreiber
  • [Show abstract] [Hide abstract]
    ABSTRACT: Both stimulation of purinergic receptors by ATP and activation of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibit amiloride-sensitive Na+ transport and activate Cl- secretion. These changes in ion transport may well affect cell volume. We therefore examined whether cell shrinkage or cell swelling do affect amiloride-sensitive Na+ transport in epithelial tissues or Xenopus oocytes and whether osmotic stress interferes with regulation of Na+ transport by ATP or CFTR. Stimulation of purinergic receptors by ATP/UTP or activation of CFTR by IBMX and forskolin inhibited amiloride-sensitive transport in mouse trachea and colon, respectively, by a mechanism that was Cl- dependent. When exposed to a hypertonic but not hypotonic bath solution, amiloride-sensitive Na+ transport was inhibited in mouse trachea and colon, independent of the extracellular Cl- concentration. Both inhibition of Na+ transport by hypertonic bath solution and ATP were additive. When coexpressed in Xenopus oocytes, activation of CFTR by IBMX and forskolin inhibited the epithelial Na+ channel (ENaC) in a Cl- dependent fashion. However, both hypertonic and hypotonic bath solutions showed only minor effects on amiloride-sensitive conductance, independent of the bath Cl- concentration. Moreover, CFTR-induced inhibition of ENaC could be detected in oocytes even after exposure to hypertonic or hypotonic bath solutions. We conclude that amiloride-sensitive Na+ absorption in mouse airways and colon is inhibited by cell shrinkage by a mechanism that does not interfere with purinergic and CFTR-mediated inhibition of ENaC.
    No preview · Article · Apr 2003 · Journal of Membrane Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intestines play an important role in the absorption and secretion of nutrients. The colon is the final area for recapturing electrolytes and water prior to excretion, and in order to maintain this electrolyte homeostasis, a complex interaction between secretory and absorptive processes is necessary. Until recently it was thought that secretion and absorption were two distinct processes associated with either crypts or surface cells, respectively. Recently it was demonstrated that both the surface and crypt cells can perform secretory and absorptive functions and that, in fact, these functions can be going on simultaneously. This issue is important in the complexities associated with secretory diarrhea and also in attempting to develop treatment strategies for intestinal disorders. Here, we update the model of colonic secretion and absorption, discuss new issues of transporter activation, and identify some important new receptor pathways that are important modulators of the secretory and absorptive functions of the colon.
    No preview · Article · Feb 2005 · Annual Review of Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amiloride-sensitive, epithelial Na(+) channel (ENaC)-mediated, active absorption of Na(+) is elevated in the airway epithelium of cystic fibrosis (CF) patients, resulting in excess fluid removal from the airway lumen. This excess fluid/volume absorption corresponds to CF transmembrane regulator-linked defects in ENaC regulation, resulting in the reduced mucociliary clearance found in CF airways. Herein we show that INO-4995, a synthetic analog of the intracellular signaling molecule, D-myo-inositol 3,4,5,6-tetrakisphosphate, inhibits Na(+) and fluid absorption across CF airway epithelia, thus alleviating this critical pathology. This conclusion was based on electrophysiological studies, fluid absorption, and (22)Na(+) flux measurements in CF airway epithelia, contrasted with normal epithelia, and on electrophysiological studies in Madin-Darby canine kidney cells and 3T3 cells overexpressing ENaC. The effects of INO-4995 were long-lasting, dose-dependent, and more pronounced in epithelia from CF patients vs. controls. These findings support preclinical development of INO-4995 for CF treatment and demonstrate for the first time the therapeutic potential of inositol polyphosphate derivatives.
    Full-text · Article · Oct 2005 · AJP Cell Physiology
Show more