Article

Stem cells in adult tissues

BD Technologies, Biotherapy Division, 21 Davis Drive, Research Triangle Park, NC 27709, USA.
Seminars in Cell and Developmental Biology (Impact Factor: 6.27). 11/2002; 13(5):369-76. DOI: 10.1016/S1084952102000939
Source: PubMed

ABSTRACT

In recent years the concept of a stem cell has evolved to encompass the hypotheses that stem cells exist within many adult tissues, and that a common 'interchangeable' progenitor cell may exist within the bone marrow capable of regenerating and repairing tissues throughout the body. As more knowledge is gained about stem cells, their potential roles in disease processes, including the development and progression of cancer, have moved to the forefront. The underlying hypothesis of this review is that cell fate is determined by a combination of intrinsic and extrinsic factors; growth and differentiation are regulated through intracellular integration of a multitude of signals initiated by internal and external stimuli. The development of successful stem cell based therapies may depend on experimental approaches that consider both the intrinsic and extrinsic factors that control cell fate.

0 Followers
 · 
3 Reads
  • Source
    • "It is widely accepted that adult stem cells are involved in normal tissue maintenance throughout life while cancer stem cells support cancer growth (Presnell et al., 2002;Smith et al., 2007). Although the cell(s) of origin for prostate cancer may include luminal, basal, neuroendocrine, progenitor and stem cells (Goldstein et al., 2010a;Goldstein et al., 2010b;Kasper, 2008Kasper, , 2009Wang and Shen, 2011), it is increasingly evident that the resultant prostate cancers contain cancer stem cells that continuously seed and maintain tumor growth (Gu et al., 2007;Maitland et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: While it is established that prostate cancer is a hormone-dependent -disease, the cell(s) of origin of prostate cancer, i.e., the tumor-initiating cells, is still in debate. Strong evidence has emerged which indicates that prostate cancer can originate from both basal and luminal epithelial cell populations. In addition, prostate epithelial stem cells are candidates for the tumor-initiating cell based on work in hematopoietic and breast cancers and because of the growing acceptance of the cancer stem cell paradigm. To appreciate the interrelationships between the multiple cells of origin of prostate cancer, it may be necessary to first fully understand the prostate stem cell differentiation lineage during normal development and adult tissue maintenance as well as the factors that regulate stem cell self-renewal and lineage commitment. Recent advances in stem cell research have permitted isolation of prostate stem cells and shed light on the hierarchical relationship between the epithelial stem cells and their differentiated lineage. Furthermore, prostate cancer stem cells have been isolated and characterized from several prostate tumors which may provide an explanation for the known clinical and molecular heterogeneity of human prostate cancers. Although prostate stem cells and prostate cancer stem cells appear to be androgen receptor negative, new findings have established key roles for several other hormones in regulating prostate stem cells and their niche. Together, this new knowledge should allow for greater insight into the details of prostate development and to increased understanding of prostate cancer initiation and progression. In this chapter we will highlight recent advances in hormone modulation of prostate stem cells and their early progeny in development, normal tissue homeostasis, and cancer. © Springer Science+Business Media, LLC 2013. All rights are reserved.
    Full-text · Chapter · Dec 2013
  • Source
    • "Recent studies on tissue engineering techniques have introduced mesenchymal stem cells as a basic tool for the construction of bone tissue.[8] A Mesenchymal stem cell is defined as a multipotent cell with indefinite self-renewal capability that can differentiate into a variety of cell types, including: Osteoblasts, chondrocytes, and adipocytes.[9] Mesenchymal stem cells can be acquired from different tissues such as bone marrow, fat, bone, and dental pulp.[10] "
    [Show abstract] [Hide abstract]
    ABSTRACT: There are significant limitations in repair of irrecoverable bone defects. Stem-cell therapy is a promising approach for the construction of bone tissue. Mesenchymal stem cells (MSCs) have been introduced as basic tools for bone tissue generation. Through MSCs, adipose-derived stem cells (ADSCs) are more interesting. Since the similarity of native osteoblasts and differentiated osteoblasts from ADSCs in terms of gene expression pattern is unknown, this study was designed to compare gene expression patterns of some genes involved in osteogenesis between human native osteoblasts and adipose-derived differentiated osteoblasts. Realtime qRT-PCR was used for studying the gene expression of osteocalcin, osteopontin, and core binding factor alpha 1 (Cbfa1) in human native osteoblasts and adipose derived osteogenic osteoblasts at days 7, 14, 21, and 28 of differentiation. This study demonstrated that native osteoblasts and differentiated osteoblasts, cultured in common osteogenic medium, have significant differences in gene expression levels for osteocalcin and osteopontin. Compared to native osteoblasts, these genes are expressed lower in all four groups of differentiated osteoblastic cells. We also found, there is a progressive increase in cbfa1 expression over the differentiation period of ADSCs from day 7 to day 28. Our findings help for better assessment of adipose-derived differentiated cells as a source for cell-based therapy.
    Full-text · Article · Mar 2012
  • Source
    • "It is widely accepted that adult stem cells are involved in normal tissue replenishment throughout life while cancer stem cells support cancer growth (Presnell et al., 2002, Smith et al., 2007). Although the cell(s) of origin for prostate cancer may include luminal, basal, neuroendocrine, progenitor and stem cells (Kasper, 2008, Wang et al., 2009), it is increasingly evident that the resultant prostate cancers contain cancer stem cells that continuously seed and maintain tumor growth (Gu et al., 2007, Kasper, 2008, Kasper, 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen reprogramming of the prostate gland as a function of developmental exposures (aka developmental estrogenization) results in permanent alterations in structure and gene expression that lead to an increased incidence of prostatic lesions with aging. Endocrine disrupting chemicals (EDCs) with estrogenic activity have been similarly linked to an increased prostate cancer risk. Since it has been suggested that stem cells and cancer stem cells are potential targets of cancer initiation and disease management, it is highly possible that estrogens and EDCs influence the development and progression of prostate cancer through reprogramming and transforming the prostate stem and early stage progenitor cells. In this article, we review recent literature highlighting the effects of estrogens and EDCs on prostate cancer risk and discuss recent advances in prostate stem/progenitor cell research. Our laboratory has recently developed a novel prostasphere model using normal human prostate stem/progenitor cells and established that these cells express estrogen receptors (ERs) and are direct targets of estrogen action. Further, using a chimeric in vivo prostate model derived from these normal human prostate progenitor cells, we demonstrated for the first time that estrogens initiate and promote prostatic carcinogenesis in an androgen-supported environment. We herein discuss these findings and highlight new evidence using our in vitro human prostasphere assay for perturbations in human prostate stem cell self-renewal and differentiation by natural steroids as well as EDCs. These findings support the hypothesis that tissue stem cells may be direct EDC targets which may underlie life-long reprogramming as a consequence of developmental and/or transient adult exposures.
    Full-text · Article · Sep 2011 · Molecular and Cellular Endocrinology
Show more