Genetic Determinants of Coxsackievirus B3 Pathogenesis

UBC McDonald Research Laboratories/The iCAPTUR E Center, Department of Pathology and Laboratory Medicine, St. Paul's Hospital/Providence Health Care-University of British Columbia, Canada.
Annals of the New York Academy of Sciences (Impact Factor: 4.38). 01/2003; 975(1):169-79. DOI: 10.1111/j.1749-6632.2002.tb05950.x
Source: PubMed


The development of high throughput genomic and bioinformatic analysis tools, coupled with established molecular techniques, has allowed new insights into the pathogenesis of infectious diseases. In humans, coxasackievirus B3 (CVB3) is the primary etiological agent of viral myocarditis, an inflammatory disease process involving the heart muscle. Early host cellular survival and apoptotic mechanisms during viral infections, as well as immune events, affect myocarditis progression and outcome. Therefore, our laboratory has been keenly interested in infectomics, defined here as the transcriptional events of both virus and host. We first elucidated up- or downregulated transcriptional activities in CVB3-infected hearts by mRNA differential display. Further characterization of these regulated genes including Nip21, IP10, and IGTPase, and study of their role in CVB3-infection are underway. In further dissection of the stages of myocarditis-peak viremia, inflammatory infiltration and tissue repair-we used cDNA microarrays to probe differential gene expression in the myocardium following virus infection. Following virus infection, there are global decreases in metabolic and mitochondrial genes, increases in signaling genes and distinctive patterns in other functional groups. To establish early gene expression profiles in infected cells by themselves, we also used oligonucleotide arrays in an in vitro model of CVB3 infection. Notably, we have found increased expression of transcription factors c-fos and c-jun down-stream of extracellular signal-related kinase, a pathway which is crucial for virus replication and pathogenesis. Our investigations based on gene profiling following CVB3 infection have thus far been fruitful in providing new experimental leads. High throughput genetic analysis has allowed us to simultaneously try on greater than 12,000 potential genetic "glass slippers." Our in vitro experimental plan has enabled us to chart prominent patterns of gene expression, analyzed by novel bioinformatic approaches, and to separate varied and potentially significant gene expression events.

5 Reads
  • Source
    • "In terms of disease characterization and detection, microarrays are also finding use. For instance, the pathogenicity of coxasackievirus B3 (CVB3) was examined; in humans this virus adversely affects the heart muscle [33]. Using cDNA microarrays, researchers compared murine hearts infected with the virus against non-infected murine hearts. "
    [Show abstract] [Hide abstract]
    ABSTRACT: With advances in robotics, computational capabilities, and the fabrication of high quality glass slides coinciding with increased genomic information being available on public databases, microarray technology is increasingly being used in laboratories around the world. In fact, fields as varied as: toxicology, evolutionary biology, drug development and production, disease characterization, diagnostics development, cellular physiology and stress responses, and forensics have benefiting from its use. However, for many researchers not familiar with microarrays, current articles and reviews often address neither the fundamental principles behind the technology nor the proper designing of experiments. Although, microarray technology is relatively simple, conceptually, its practice does require careful planning and detailed understanding of the limitations inherently present. Without these considerations, it can be exceedingly difficult to ascertain valuable information from microarray data. Therefore, this text aims to outline key features in microarray technology, paying particular attention to current applications as outlined in recent publications, experimental design, statistical methods, and potential uses. Furthermore, this review is not meant to be comprehensive, but rather substantive; highlighting important concepts and detailing steps necessary to conduct and interpret microarray experiments. Collectively, the information included in this text will highlight the versatility of microarray technology and provide a glimpse of what the future may hold.
    Full-text · Article · Feb 2007 · Microbial Cell Factories
  • Source

    Preview · Article ·
  • Source

    Full-text · Article ·
Show more