Protein Tyrosine Phosphatase PTP20 Induces Actin Cytoskeleton Reorganization by Dephosphorylating p190 RhoGAP in Rat Ovarian Granulosa Cells Stimulated with Follicle-Stimulating Hormone

Gene Research Center, University of Tsukuba, Ibaraki 305-8572, Japan.
Molecular Endocrinology (Impact Factor: 4.02). 05/2003; 17(4):534-49. DOI: 10.1210/me.2002-0187
Source: PubMed


We identified 25 protein tyrosine phosphatases (PTPs) expressed in rat ovarian granulosa cells. Of these PTPs, the expression levels of at least PTP20, PTP-MEG1, PTPepsilonM, and PTPepsilonC significantly changed during the estrous cycle. We examined the cellular functions of PTP20 in granulosa cells by expressing the wild type, a catalytically inactive CS mutant in which Cys229 of PTP20 was changed to Ser, or a substrate-trapping DA mutant in which Asp197 was mutated to Ala, using an adenovirus vector. Overexpression of the wild type, but not of the CS mutant, induced retraction of the cell body with the extension of long, dendritic-like processes after stimulation with FSH, a critical factor for the survival and differentiation of these cells. In addition, cell adhesion to the substratum decreased in an FSH-dependent manner. Inhibiting Rho GTPase activity with C3 botulinum toxin caused similar morphological changes. The FSH-enhanced phosphotyrosine (p-Tyr) level of p190 RhoGAP was selectively reduced by the overexpressed wild type, but not by mutated PTP20. Although p190 RhoGAP is tyrosine phosphorylated by c-Src via the tyrosine kinase Pyk2, wild-type PTP20 had little effect on p-Tyr418 of c-Src and no effect on p-Tyr402 of Pyk2, which are required for full c-Src activity and for interacting between Pyk2 and c-Src, respectively. The CS and DA mutants as well as the wild type reduced the formation of p190 RhoGAP-p120 RasGAP complexes. Confocal microscopy analysis revealed that PTP20 intracellularly colocalizes with p190 RhoGAP. These results demonstrate that PTP20 regulates the functions of granulosa cells in an FSH-dependent manner by dephosphorylating p190 RhoGAP and subsequently inducing reorganization of the actin cytoskeleton. Moreover, our data suggest that PTPs play significant roles in controlling the dynamics of ovarian functions.

  • Source
    • "First, it is involved in the negative feedback mechanisms controlling the Bcr-Abl fusion tyrosine kinase-signalling network by inhibiting the phosphorylation of Src family kinase (Rubbi et al, 2011). Second, PTPN18 can induce actin cytoskeleton reorganisation (Shiota et al, 2003), suggesting a plausible explanation of the morphological changes observed in the imatinib-resistant GIST cells (Mahadevan et al, 2007). Third, altered phosphorylation of tyrosine kinases is an alternative mechanism of imatinib resistance in GIST (Takahashi et al, 2013), suggesting the possible involvements of protein phosphatases in imatinib resistance of GIST. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Gastrointestinal stromal tumour (GIST) is mainly initialised by receptor tyrosine kinase gene mutations. Although the tyrosine kinase inhibitor imatinib mesylate considerably improved the outcome of patients, imatinib resistance still remains a major therapeutic challenge in GIST therapy. Herein we evaluated the clinical impact of microRNAs in imatinib-treated GISTs. Methods: The expression levels of microRNAs were quantified using microarray and RT–qPCR in GIST specimens from patients treated with neoadjuvant imatinib. The functional roles of miR-125a-5p and PTPN18 were evaluated in GIST cells. PTPN18 expression was quantified by western blotting in GIST samples. Results: We showed that overexpression levels of miR-125a-5p and miR-107 were associated with imatinib resistance in GIST specimens. Functionally, miR-125a-5p expression modulated imatinib sensitivity in GIST882 cells with a homozygous KIT mutation but not in GIST48 cells with double KIT mutations. Overexpression of miR-125a-5p suppressed PTPN18 expression, and silencing of PTPN18 expression increased cell viability in GIST882 cells upon imatinib treatment. PTPN18 protein levels were significantly lower in the imatinib-resistant GISTs and inversely correlated with miR-125a-5p. Furthermore, several microRNAs were significantly associated with metastasis, KIT mutational status and survival. Conclusions: Our findings highlight a novel functional role of miR-125a-5p on imatinib response through PTPN18 regulation in GIST.
    Full-text · Article · Oct 2014 · British Journal of Cancer
  • Source
    • "Cells were lysed in RIPA buffer, and proteins were isolated from cell lysates by immunoprecipitation as described previously [28]. For immunoblotting, proteins were separated on SDS-polyacrylamide gels under reducing conditions, followed by electrophoretic transfer to PVDF membranes as described previously [29]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock cognate protein 70 (Hsc70) acts as a molecular chaperone for the maintenance of intracellular proteins, which allows cancer cells to survive under proteotoxic stress. We attempted to use Hsc70 to identify key molecules in cancer cell survival. Here, we performed mass-spectrometry-based proteomics analysis utilizing affinity purification with anti-Hsc70 antibodies; as a result, 83 differentially expressed proteins were identified under stress conditions. This result implies that there was a change in the proteins with which Hsc70 interacted in response to stress. Among the proteins identified under both serum-depleted and 5-fluorouracil-treated conditions, Rab1A was identified as an essential molecule for cancer cell survival. Hsc70 interacted with Rab1A in a chaperone-dependent manner. In addition, Hsc70 knockdown decreased the level of Rab1A and increased the level of its ubiquitination under stress conditions, suggesting that Hsc70 prevented the degradation of Rab1A denatured by stress exposure. We also found that Rab1A knockdown induced cell death by inhibition of autophagosome formation. Rab1A may therefore contribute to overcoming proteotoxic insults, which allows cancer cells to survive under stress conditions. Analysis of Hsc70 interactors provided insight into changes of intracellular status. We expect further study of the Hsc70 interactome to provide a more comprehensive understanding of cancer cell physiology.
    Full-text · Article · May 2014 · PLoS ONE
  • Source
    • "The phosphorylation of PAX generates a binding site for p120RasGAP displacing it from its binding partner p190RhoGAP, that once freed may contribute to inhibit RhoA activity [154]. A similar control mechanism operated on p190RhoGAP has been described also for PYK2/Src in rat ovarian granulosa cells and is contrasted by the activity of PTP20 [155]. However the correlation between RhoA and FAK is more complex. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of capillary-like structures during angiogenesis requires a series of well-orchestrated cellular events allowing endothelial cells and pericytes to migrate into the perivascular space. The proper activation of the migratory machinery in these cells is fine controlled by the presence of angiogenic challenges and by the interactions with extracellular matrix. The two members of the focal adhesion protein tyrosine kinases (FA-PTKs), FAK and PYK2, play a central role in modulating endothelial and vascular smooth muscle cells migration confirming the well consolidated observations in other migrating cell types. However accumulating data reveal that FAK and PYK2 are involved in several cell processes including cell proliferation and survival. FAK, once localized to focal adhesions, is thought to be one of the principal effectors in linking signals initiated by integrins and growth factor receptors to cytoskeleton, thus controlling migration. Although more obscure, and differently regulated, the function of PYK2 seems to be similar to that of FAK, but restricted to few cell types, including vasculature forming cells. FAK and PYK2 exert a primary role as adaptor proteins able to recruit, with high turnover, several proteins which in turn, through their docking domains and tyrosine kinase activity, determine both the turnover in focal adhesion assembly and the specificity of downstream signaling. The characterization of functional interactions of FA-PTKs may provide new potential therapeutic targets in order to control vascular pathological processes including angiogenesis.
    Full-text · Article · Feb 2007 · Current pharmaceutical design
Show more