European Concerted Action on Anticoagulation (ECAA). An assessment of lyophilised plasmas for ISI calibration of CoaguChek and TAS whole blood prothrombin time monitors.

ECAA Central Facility, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, UK.
Journal of Clinical Pathology (Impact Factor: 2.92). 03/2003; 56(2):114-9.
Source: PubMed


The recommended method for the international sensitivity index (ISI) calibration of whole blood point of care testing (POCT) prothrombin time (PT) systems was originally described by Tripodi et al in 1993 but is too complex and demanding. The present European Concerted Action on Anticoagulation (ECAA) study aimed to assess the reliability of simpler ISI calibration using lyophilised plasma samples.
ISI calibrations using three different types of ECAA lyophilised plasma samples (artificially depleted, individual, and pooled coumarin) were compared with whole blood calibrations on CoaguChek Mini and TAS PT-NC POCT monitors at 10 centres.
With CoaguChek Mini systems, lyophilised coumarin plasma samples (both single donation and pooled) gave ISI and international normalised ratio (INR) values comparable to whole blood. With artificially depleted plasma, ISI and INR values were too high. With TAS PT-NC systems, all three types of lyophilised plasma samples gave inaccurate ISI and unreliable INR results, similar to previous ECAA findings with fresh plasma calibrations.
With CoaguChek Mini systems, ISI calibration can be simplified by the use of ECAA lyophilised plasma samples from coumarin treated patients. Further study is needed to devise a simpler calibration method for the TAS PT-NC system.

Download full-text


Available from: Jørgen Jespersen
  • Source
    • "In addition, there is a need to control pre analytical errors which occur in PT/INR monitoring at both home and the hospital [3]; otherwise patients might stop self-testing for economic, social and psychological reasons. Another issue that patients raised in their blogs was the availability of technical services for self-testing device calibration, which should be timely, regularly and standardised to ensure safety and confidence in the equipment both by patients and by those professionally monitoring device use [42]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients on oral anticoagulant therapy (OAT) require regular testing of the prothrombin time (PT) and the international normalised ratio (INR) to monitor their blood coagulation level to avoid complications of either over or under coagulation. PT/INR can be tested by a healthcare professional or by the patient. The latter mode of the testing is known as patient self-testing or home testing. The objective of this study was to elicit patients' perspectives and experiences regarding PT/INR self-testing using portable coagulometer devices. Internet blog text mining was used to collect 246 blog postings by 108 patients, mainly from the USA and the UK. The content of these qualitative data were analysed using XSight and NVivo software packages. The key themes in relation to self-testing of OAT identified were as follows: Patient benefits reported were time saved, personal control, choice, travel reduction, cheaper testing, and peace of mind. Equipment issues included high costs, reliability, quality, and learning how to use the device. PT/INR issues focused on the frequency of testing, INR fluctuations and individual target (therapeutic) INR level. Other themes noted were INR testing at laboratories, the interactions with healthcare professionals in managing and testing OAT and insurance companies' involvement in acquiring the self-testing equipment. Social issues included the pain and stress of taking and testing for OAT. Patients' blogs on PT/INR testing provide insightful information that can help in understanding the nature of the experiences and perspectives of patients on self-testing of OAT. The themes identified in this paper highlight the substantial complexities involved in self-testing programmes in the healthcare system. Thus, the issues elicited in this study are very valuable for all stakeholders involved in developing effective self-testing strategies in healthcare that are gaining considerable current momentum particularly for patients with chronic illness.
    Full-text · Article · Feb 2011 · BMC Health Services Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: International sensitivity index (ISI) calibration of whole blood prothrombin time (PT) monitors is too complex. We previously simplified the method by using European Concerted Action on Anticoagulation (ECAA) lyophilized plasma samples with the TAS PT-NC (Bayer AG, Leverkusen, Germany) and the CoaguChek Mini (Roche Diagnostics, Mannheim, Germany) whole blood PT monitoring systems. The TAS PT-NC required a correction derived from the line of equivalence. Monte Carlo bootstrap analysis of reducing numbers of test samples was performed with both systems. Plasma samples from patients receiving coumarin (coumarin samples), healthy subjects (normal samples), and plasma samples artificially depleted of coagulation factors were used. With the TAS PT-NC, 20 coumarin samples or 20 artificially depleted samples with 7 normal samples gave reliable ISI and international normalized ratio and satisfactory precision. With the CoaguChek Mini, 30 coumarin and 10 normal samples were required. Simplification of ISI calibration of the 2 monitoring systems is possible using fewer ECAA lyophilized plasma samples than the 80 required according to the World Health Organization guidelines for conventional PT systems and previously recommended for fresh plasma samples tested on the same 2 monitoring systems.
    Full-text · Article · Mar 2003 · American Journal of Clinical Pathology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously, the attempt to simplify the International Sensitivity Index (ISI) calibration of the CoaguChek Mini whole blood point-of-care test prothrombin time (PT) monitor system was successful using lyophilized plasmas from coumarin-treated patients but not with lyophilized artificially depleted plasmas. With the TAS PT-NC monitor system, both types of plasma failed to provide reliable calibrations. The present study assesses a procedure for the ISI calibration of a TAS PT-NC and CoaguChek Mini whole blood point-of-care test PT monitor systems using lyophilized plasmas. Using lyophilized artificially depleted and coumarin plasma calibrations, we have evaluated a correction for the monitor displayed PT. This was based on a 'line of equivalence' derived from the relationship between whole blood and fresh plasma PT with both types of monitor system. With the TAS PT-NC, the use of this 'line of equivalence' resulted in reliable ISI with both lyophilized coumarin and artificially depleted plasmas. There was no significant difference between mean monitor and mean reference International Normalized Ratio (INR) with the artificially depleted plasmas. With the lyophilized coumarin plasma calibrations there was only a small INR difference. Correction with the 'line of equivalence' therefore facilitates calibration of the TAS PT-NC with lyophilized plasmas. With the CoaguChek Mini, the correction based on the 'line of equivalence' did not improve results but was not required with this system.
    Full-text · Article · May 2003 · Journal of Thrombosis and Haemostasis
Show more