Homburg Traumatic Brain Injury Group. Changes in linear dynamics of cerebrovascular system after severe traumatic brain injury

Universität des Saarlandes, Saarbrücken, Saarland, Germany
Stroke (Impact Factor: 5.72). 05/2003; 34(5):1197-202. DOI: 10.1161/01.STR.0000068409.81859.C5
Source: PubMed


We sought to describe the dynamic changes in the cerebrovascular system after traumatic brain injury by transfer function estimation and coherence.
In 42 healthy volunteers (mean+/-SD age, 37+/-17 years; range, 17 to 65 years), spontaneous fluctuations of middle cerebral artery blood flow velocity and of finger blood pressure (BP) were simultaneously recorded over a period of 10 minutes under normocapnic and hypocapnic conditions to generate normative spectra of coherence, phase shift, and gain over the frequency range of 0 to 0.25 Hz. Similar recordings were performed in 24 patients with severe traumatic brain injury (Glasgow Coma Scale score <or=8; mean+/-SD age, 50+/-20 years) serially on days 1, 3, 5, and 8 after trauma. Cranial perfusion pressure was kept at >70 mm Hg. Each blood flow velocity/BP recording was related to the presence or absence of middle cerebral artery territory brain parenchyma lesions on cranial CT performed within a close time frame.
In controls, hypocapnia decreased coherence (0.0 to 0.20 Hz), increased phase shift (0.0 to 0.17 Hz), and decreased gain in the frequency range of 0.0 to 0.11 Hz but increased gain at frequencies of 0.20 to 0.25 Hz (P<0.01 for all frequency ranges reported). In patients with traumatic brain injury, 102 investigations were possible. Compared with controls, coherence was increased in the frequency range <0.03 Hz and between 0.13 and 0.25 Hz in both normocapnia and hypocapnia, irrespective of the CT findings. Gain was unchanged in normocapnia and in the absence of a CT lesion. Gain was decreased in hypocapnia at frequencies >0.12 Hz irrespective of the presence/absence of a CT lesion. Phase shift decreased rapidly between 0.06 and 0.13 Hz under hypocapnic conditions and under normocapnic conditions in the presence of a CT lesion (P< 0.01).
Use of spontaneous fluctuations of blood flow velocity and BP to assess the cerebrovascular system dynamically requires consideration of the Paco2 level. In different conditions, including severe traumatic brain injury, the cerebrovascular system behaves linearly only in parts of the investigated frequency range.

Download full-text


Available from: Martin Müller, Jan 20, 2014
  • Source
    • "To calculate the coherence between Ch1 and the other four channels, the coherence value was estimated as follows [18,19]: "
    [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have explored the relationship between skin microcirculation and meridian activation. However, few studies have examined blood perfusion coherence along the meridians, and other studies have suggested that the skin vasodilator response relates to age. This study investigated blood perfusion coherence characteristics along the meridian of the forearm in healthy volunteers. A total of 15 young subjects (25.53 +/- 2.20) and 15 middle-aged subjects (50.07 +/- 3.37) were recruited for this study. Before experiments, each subject was placed in a temperature-controlled room for 60 min. Skin blood perfusion from five points was recorded simultaneously using a full-field laser perfusion imager before and after inflatable occlusion. The five points comprised three points located on the pericardium meridian, and two points from different locations. Coherence analysis between these points was performed at different frequency intervals from 0.0095 to 2 Hz. In young subjects, the coherence value was unchanged before and after occlusion, and there was no significant difference in coherence value between meridian-meridian points (M-M) and meridian-parameridian points (M-P). In middle-aged subjects, the coherence value increased significantly in both M-M and M-P at frequency intervals of 0.14-0.4 Hz, 0.4-1.6 Hz, and 1.6-2 Hz. However, there was no significant difference in coherence values between M-M and M-P. Inflatable occlusion can increase middle-aged subjects' blood perfusion coherence value of the forearm. However, there is no specificity in meridian location.
    Full-text · Article · Nov 2013 · BMC Complementary and Alternative Medicine
  • Source
    • "However, although doubts may exist regarding the accuracy of end-tidal carbon dioxide measurements, no significant changes in ETCO 2 or respiratory rate were noted in the present study. Even if hypoxia induces hyperventilation, lower arterial PCO 2 may induce decreases (Muller et al, 2003) or no changes (Eames et al, 2004; Edwards et al, 2002) in coherence and "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute hypoxia directly causes cerebral arteriole vasodilation and also stimulates peripheral chemoreceptors to change autonomic neural activity. These changes may alter cerebral vascular modulation. We therefore hypothesized that dynamic cerebral autoregulation would be altered during acute exposure to hypoxia. Fifteen healthy men were examined under normoxic (21%) and hypoxic conditions. Oxygen concentrations were decreased in stepwise fashion to 19%, 17%, and 15%, for 10 mins at each level. Mean blood pressure (MBP) in the radial artery was measured via tonometry, and cerebral blood flow velocity (CBFV) in the middle cerebral artery was measured by transcranial Doppler ultrasonography. Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis of beat-by-beat changes in MBP and CBFV. Arterial oxygen saturation decreased significantly during hypoxia, while end-tidal CO2 and respiratory rate were unchanged, as was steady-state CBFV. With 15% O2, very-low-frequency power of MBP and CBFV variability increased significantly by 185% and 282%, respectively. Moreover, transfer function coherence (21% O2, 0.46+/-0.04; 15% O2, 0.64+/-0.04; P=0.028) and gain (21% O2, 0.61+/-0.05 cm/secs/mm Hg; 15% O2, 0.86+/-0.08 cm/secs/mm Hg; P=0.035) in the very-low-frequency range increased significantly by 53% and 48% with 15% O2, respectively. However, these indices were unchanged in low- and high-frequency ranges. Acute hypoxia thus increases arterial pressure oscillations and dependence of cerebral blood flow (CBF) fluctuations on blood pressure oscillations, resulting in apparent increases in CBF fluctuations in the very-low-frequency range. Hypoxia may thus impair dynamic cerebral autoregulation in this range. However, these changes were significant only with hypoxia at 15% O2, suggesting a possible threshold for such changes.
    Preview · Article · May 2007 · Journal of Cerebral Blood Flow & Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the study was to test the hypothesis that dynamic cerebral pressure-autoregulation is associated with the outcome of patients with severe head injury and to derive optimal criteria for future studies on the predictive value of autoregulation indices. Repeated measurements were performed on 32 patients with severe head injury. Arterial blood pressure (ABP) was measured continuously with an intravascular catheter, intracranial pressure (ICP) was recorded with a subdural semiconductor transducer and cerebral blood flow velocity (CBFV) was measured with Doppler ultrasound in the middle cerebral artery. Transfer function analysis was performed on mean beat-to-beat values, using ABP or CBFV as input variables and CBFV or ICP as the output variables. A dynamic index of autoregulation (ARI) ranging between 0 and 9 was extracted from the CBFV step response for a change in ABP. No significant differences between survivors and non-survivors were found due to mean values of ICP, ABP, CPP, CBFV, pCO2, GCS, age or heart rate. The transfer functions between ABP-ICP and CBFV-ICP did not show any significant differences either. The median [lower, upper quartiles] ARI was significantly lower for non-survivors compared with survivors [4.8 (0.0, 5.9) v. 6.9 (5.9, 7.4), p= 0.004]. The correlation between ARI and GOS was also significant (r=0.464, p=0.011). Cohen's coefficient was optimal for a threshold of ARI= 5.86 (kappa 0.51, p=0.0036), leading to a sensitivity for death of 75%, specificity=76.5%, odds ratio =9.75 and overall precision = 75.8%. The difference in ARI values between survivors and non-survivors persisted when results were adjusted for GCS (p = 0.028). A similar analysis for the Marshall CT scale did not reach significance (p = 0.072). A logistic regression analysis confirmed that apart from the ARI, no other variables had a significant contribution to predict outcome. In this group of patients, death following severe head injury could not be explained by traditional indices of risk, but was strongly correlated to indices of dynamic cerebral pressure-autoregulation extracted by means of transfer function analysis. Future studies using a prospective design are needed to validate the predictive value of the ARI index, as estimated by transfer function analysis, in relation to death and other unfavourable outcomes.
    No preview · Article · Nov 2004 · British Journal of Neurosurgery
Show more