Article

Iron status at 12 months of age—Effects of body size, growth and diet in a population with high birth weight

Landspitali University Hospital and Department of Food Science, University of Iceland, Reykjavik, Iceland.
European Journal of Clinical Nutrition (Impact Factor: 2.71). 04/2003; 57(4):505-13. DOI: 10.1038/sj.ejcn.1601594
Source: PubMed

ABSTRACT

To investigate effects of growth and food intake in infancy on iron status at the age of 12 months in a population with high birth weight and high frequency of breast-feeding.
In a longitudinal observational study infants' consumption and growth were recorded. Weighed 2 day food records at the ages of 6, 9 and 12 months were used to analyse food and nutrient intake.
Healthy-born participants were recruited from four maternity wards. Blood samples and growth data were collected from healthcare centres and food consumption data at home.
Newborn infants (n=180) were selected randomly according to the mother's domicile and 77% (n=138) participated, of them, 83% (n=114), or 63% of original sample, came in for blood sampling.
Every fifth child was iron-deficient (serum ferritin <12 microg/l and mean corpuscular volume<74 fl) and 2.7% were also anaemic (Hb<105 g/l). Higher weight gain from 0 to 12 months was seen in infants who were iron-deficient at 12 months (6.7+/-0.9 kg) than in non-iron-deficient infants (6.2+/-0.9 kg) (P=0.050). Serum transferrin receptors at 12 months were positively associated with length gain from 0 to 12 months (adjusted r(2)=0.14; P=0.045) and mean corpuscular volume negatively to ponderal index at birth (adjusted r(2)=0.14; P=0.019) and 12 months (adjusted r(2)=0.17; P=0.006). Iron-deficient infants had shorter breast-feeding duration (5.3+/-2.2 months) than non-iron-deficient (7.9+/-3.2 months; P=0.001). Iron status indices were negatively associated with cow's milk consumption at 9-12 months, significant above 460 g/day, but were positively associated with iron-fortified breakfast cereals, fish and meat consumption.
: In a population of high birth weight, iron deficiency at 12 months is associated with faster growth and shorter breast-feeding duration from 0 to 12 months of age. The results suggest that a diet of 9-12-month-olds should avoid cow's milk above 500 g/day and include fish, meat and iron-fortified breakfast cereals to improve iron status.

Full-text preview

Available from: idpas.org
  • Source
    • "In addition to the above studies, a natural trial of iron fortification—that of formula supplementation of 7 mg/L in Western Europe—has not found significantly different rates of anemia when compared with formula fed infants in the United States (Male et al., 2001; Thorsdottir et al., 2003). Elsewhere, it has been suggested that the absence of a difference in risk of iron deficiency anemia between infants fed low iron and standard iron formula should be interpreted as evidence that US standard (12 mg/L) fortification is not harmful to infants (Singhal et al., 2000). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, there has been considerable debate regarding the appropriate amount of iron fortification for commercial infant formula. Globally, there is considerable variation in formula iron content, from 4 to 12 mg iron/L. However, how much fortification is necessary is unclear. Human milk is low in iron (0.2-0.5 mg/L), with the majority of infant iron stores accumulated during gestation. Over the first few months of life, these stores are depleted in breastfeeding infants. This decline has been previously largely perceived as pathological; it may be instead an adaptive mechanism to minimize iron availability to pathogens coinciding with complementary feeding. Many of the pathogens involved in infantile illnesses require iron for growth and replication. By reducing infant iron stores at the onset of complementary feeding, infant physiology may limit its availability to these pathogens, decreasing frequency and severity of infection. This adaptive strategy for iron regulation during development is undermined by the excess dietary iron commonly found in infant formula, both the iron that can be incorporated into the body and the excess iron that will be excreted in feces. Some of this excess iron may promote the growth of pathogenic, iron requiring bacteria disrupting synergistic microflora commonly found in breastfed infants. Evolutionarily, mothers who produced milk with less iron and infants who had decreased iron stores at the time of weaning may have been more likely to survive the transition to solid foods by having limited iron available for pathogens. Contemporary fortification practices may undermine these adaptive mechanisms and increase infant illness risk. Am. J. Hum. Biol. 00:000-000, 2013. © 2013 Wiley Periodicals, Inc.
    Preview · Article · Jan 2014 · American Journal of Human Biology
  • Source
    • "The prevalence of IDA in European infants is very low below the age of 6 months but increases to 2–3% at 12 months (84) and 3–7% at 1–3 years of age (85–87). In the 1990s, non-anemic ID (defined as s-Ft<12 µg/L) had a prevalence of 26–40% among 12-month-olds in the Nordic countries (88, 89) but more recent data shows a lower prevalence around 6% (90). The health consequences of non-anemic ID are less well known and the prevalence is highly dependent on the definition of ID, which is controversial during infancy (91). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The present literature review is part of the NNR5 project with the aim of reviewing and updating the scientific basis of the 4th edition of the Nordic Nutrition Recommendations (NNR) issued in 2004. The objective of this systematic literature review was to assess the health effects of different intakes of iron, at different life stages (infants, children, adolescents, adults, elderly, and during pregnancy and lactation), in order to estimate the requirement for adequate growth, development, and maintenance of health. The initial literature search resulted in 1,076 abstracts. Out of those, 276 papers were identified as potentially relevant. Of those, 49 were considered relevant and were quality assessed (A, B, or C). An additional search on iron and diabetes yielded six articles that were quality assessed. Thus, a total of 55 articles were evaluated. The grade of evidence was classified as convincing (grade 1), probable (grade 2), suggestive (grade 3), and inconclusive (grade 4). There is suggestive evidence that prevention or treatment of iron deficiency (ID) and iron deficiency anemia (IDA) improves cognitive, motoric, and behavioral development in young children, and that treatment of IDA improves attention and concentration in school children and adult women. There is insufficient evidence to show negative health effects of iron intakes in doses suggested by the NNR 4. There is insufficient evidence to suggest that normal birth weight, healthy, exclusively breast-fed infants need additional dietary iron before 6 months of life in the Nordic countries. An iron concentration of 4-8 mg/L in infant formulas seems to be safe and effective for normal birth weight infants. There is probable evidence that iron supplements (1-2 mg/kg/day) given up to 6 months of age to infants with low birth weight (<2,500 g) prevents IDA and possibly reduce the risk of behavioral problems later on. There is probable evidence that ID and IDA in pregnant women can be effectively prevented by iron supplementation at a dose of 40 mg/day from week 18-20 of gestation. There is probable evidence that a high intake of heme iron, but not total dietary, non-heme or supplemental iron, is associated with increased risk of type 2 diabetes (T2D) and gestational diabetes. Overall, the evidence does not support a change of the iron intakes recommended in the NNR 4. However, one could consider adding recommendations for infants below 6 months of age, low birth weight infants and pregnant women.
    Full-text · Article · Jul 2013 · Food & Nutrition Research
  • Source
    • "The other authors have reported a similar sex difference. [13],[15],[20] Nearly 80% of our infants were exclusively breastfed up to 6 months. The tendency to have IDA was 27% in this group, which is higher than in infants fed with formula milk (16.7%). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron deficiency anemia (IDA) is one of the most common nutritional problems in the world, especially in developing countries. Infants aged between 4 and 24 months are among the population groups that are most affected by iron deficiency (ID). The aim of this study was to investigate the prevalence of ID and IDA in infants aged 12-15 months, living in Ahwaz, southwest of Iran. One hundred and twenty-six infants participated in the study. The mean corpuscular volume and hemoglobin (Hb), serum ferritin and hematocrit levels were measured. Anemia was defined when Hb < 11 g/dL and ID when ferritin < 12 microg/mL. The prevalence of ID and IDA was 31.7 and 26.2%, respectively. The tendency to have IDA in infants fed with cow's milk and infants who did not receive ferrous sulfate was higher than in the other subjects. ID and IDA are common among infants aged 12-15 months living in Ahwaz, Iran. Maintenance of exclusive breastfeeding up to the 4-6th month of life and iron supplementation for the target group is needed.
    Full-text · Article · Apr 2009 · Indian Journal of Pathology and Microbiology
Show more