Gastric function measurements in drug development

Department of Medicine B, University of Münster, Albert-Schweitzer-Strasse 33, D-48129 Münster, Germany.
British Journal of Clinical Pharmacology (Impact Factor: 3.88). 09/2003; 56(2):156-64. DOI: 10.1046/j.1365-2125.2003.01935.x
Source: PubMed


The function of the stomach includes initiation of digestion by exocrine secretions such as acid and pepsin, which are under the control of the endocrine secretion of hormones that also coordinate intestinal motility. The stomach also stores and mechanically disrupts ingested food. Various techniques have been developed to assess gastric physiology, the most important of which is assessment of acid secretion, as well as gastric motility and gastric emptying. The influence of drugs on gastric function and the effect of gastric secretion and mechanical actions on the bioavailability of novel compounds are of critical importance in drug development and hence to clinical pharmacologists. The control of acid secretion is essential in the treatment of peptic ulcer disease as well as gastrooesophageal reflux disease (GORD); pH-metry can be used to determine the necessary dose of an acid suppressant to heal mucosal damage. Disturbed gastric myoelectric activity leading to gastroparesis can cause delayed gastric emptying, often found in patients with diabetes mellitus. Electrogastrography (EGG) may be used to evaluate the influence of prokinetics and other drugs on this condition and aid in determining effective therapy.

  • Source
    • "Upper gastrointestinal symptoms such as nausea, vomiting, and abdominal pain are frequent side effects of many medications, and may be due in part to drug effects on upper gastrointestinal tract transit and contractility. Evaluation of gastric motility is usually performed by gastric scintigraphy or 13C-labeled acetate and octanoic acid breath tests [5]. Gastric scintigraphy involves a 12-hour fast and subsequent ingestion of a standardized meal labeled with a radioactive isotope. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A wireless motility capsule is a new method for ambulatory assessment of transit times and motility throughout the gastrointestinal tract. The objective of this study was to evaluate the ability of a wireless motility capsule to detect drug effects on gastric emptying time (GET) and gastric contractility. 15 healthy adults were administered in random order saline, erythromycin IV 150 mg, or morphine IV 0.05 mg/kg BW. Subjects ate a standard meal after each infusion, and subsequently ingested the motility capsule. Data were recorded for 8 hours, and the results were analyzed using the manufacturer's software. GET was significantly faster after erythromycin than either saline or morphine. Morphine tended to delay emptying of the capsule compared to saline. There was a trend toward a greater frequency of gastric contractions with erythromycin and a reduced frequency of gastric contractions with morphine that did not reach statistical significance. A wireless motility capsule successfully detected acceleration of gastric emptying induced by erythromycin, and retardation of gastric motility caused by morphine. These results indicate that a wireless motility capsule is a promising technique to assess pharmacologic effects on gastric transit and contractility and aid in development of drugs for gastric motor disorders.
    Full-text · Article · Jan 2014 · BMC Gastroenterology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the development of advanced vaccine technology, as many as 15 million deaths occur annually as a result of inadequate prophylactic or therapeutic treatments against infectious diseases (World Health Organization 2008). The emphasis on profitability by the pharmaceutical industry has led to development of high-cost vaccines targeting diseases with high profit margins, resulting in an annual death toll for developing countries that is largely preventable. Daniell and ­co-investigators published the first expression of a vaccine antigen, cholera toxin subunit B, through transgenic tobacco chloroplasts in 2001. The polyploidy nature of the chloroplast genome enables engineering of a high copy number of target gene, while the translational machinery of the plastid directs the synthesis of bioactive proteins with proper folding, disulfide bond formation, and lipidation. Furthermore, gene integration is site-specific, expression is polycistronic, and natural gene containment occurs due to the maternal inheritance of the chloroplast genome. The chloroplast transformation technology (CTT) has been used to express proteins of bacterial, viral, protozoan, and recently mammalian origins that may be subsequently utilized in immunization strategies to produce protective or therapeutic immunity. Such chloroplast-derived vaccines represent an inexpensive and effective means of producing antigen-subunit vaccines. Furthermore, transformation of edible crops such as lettuce could generate stable orally-deliverable vaccine antigens through inexpensive field production and agricultural drying techniques. This platform could therefore obviate cold-chain logistics and the requirement of sterile injectables, drastically reducing downstream production costs of such biopharmaceuticals. With these proof-of-concept studies, focus within CTT is shifting towards establishing a viable platform for human immunization by demonstrating the ­functionality of such chloroplast derived proteins, emphasizing the need to develop edible plant-based alternatives to tobacco, and improving efficacy through ­additional peptide fusion-domains.
    No preview · Chapter · Jan 1970
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gastric dysmotility disorders are markedly heterogeneous group of gastrointestinal tract disorders and their etiology vary substantially. Some clinical manifestations of gastric dyspepsia can be present but they could be clinically silent, too. The authors give an overview of recent possibilities of dysmotility disorders diagnostics and of their relation to diabetes mellitus.
    No preview · Article · Jun 2004 · Vnitr̆ní lékar̆ství
Show more