Parsing Reward

Department of Psychology, Biopsychology Program, University of Michigan, Ann Arbor, MI 48109-1109, USA.
Trends in Neurosciences (Impact Factor: 13.56). 10/2003; 26(9):507-13. DOI: 10.1016/S0166-2236(03)00233-9
Source: PubMed


Advances in neurobiology permit neuroscientists to manipulate specific brain molecules, neurons and systems. This has lead to major advances in the neuroscience of reward. Here, it is argued that further advances will require equal sophistication in parsing reward into its specific psychological components: (1) learning (including explicit and implicit knowledge produced by associative conditioning and cognitive processes); (2) affect or emotion (implicit 'liking' and conscious pleasure) and (3) motivation (implicit incentive salience 'wanting' and cognitive incentive goals). The challenge is to identify how different brain circuits mediate different psychological components of reward, and how these components interact.

Full-text preview

Available from:
  • Source
    • "One interpretation is that activation of the LH GABA -VTA pathway sends a signal to the mouse that causes the recognition of an appetitive reinforcer. An alternative interpretation is that the LH GABA -VTA pathway might drive incentive salience or an intense ''wanting,'' consistent with a signal underlying conditioned approach, but at a non-physiological level that produces this aberrant feeding-related behavior (Berridge and Robinson, 2003). Consistent with this, it is possible that activation of the LH GABA -VTA projection actually produces intense sensations of craving, or urges to feed. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The lateral hypothalamic (LH) projection to the ventral tegmental area (VTA) has been linked to reward processing, but the computations within the LH-VTA loop that give rise to specific aspects of behavior have been difficult to isolate. We show that LH-VTA neurons encode the learned action of seeking a reward, independent of reward availability. In contrast, LH neurons downstream of VTA encode reward-predictive cues and unexpected reward omission. We show that inhibiting the LH-VTA pathway reduces "compulsive" sucrose seeking but not food consumption in hungry mice. We reveal that the LH sends excitatory and inhibitory input onto VTA dopamine (DA) and GABA neurons, and that the GABAergic projection drives feeding-related behavior. Our study overlays information about the type, function, and connectivity of LH neurons and identifies a neural circuit that selectively controls compulsive sugar consumption, without preventing feeding necessary for survival, providing a potential target for therapeutic interventions for compulsive-overeating disorder. Copyright © 2015 Elsevier Inc. All rights reserved.
    Full-text · Article · Jan 2015 · Cell
  • Source
    • "Decision making is a complex process, but one critical aspect of decision making, in healthy individuals and clinical populations alike, is reward-based learning (i.e., Ridderinkhof & van den Wildenberg, 2004). One necessary aspect of reward-based learning is the acquisition of knowledge, implicit or explicit, about the relationships between stimuli and actions (Berridge & Robinson, 2003). Thus, individuals must learn from available rewards and use this information to make decisions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Depression is often characterized by attentional biases toward negative items and away from positive items, which likely affects reward and punishment processing. Recent work has reported that training attention away from negative stimuli reduced this bias and reduced depressive symptoms. However, the effect of attention training on subsequent learning has yet to be explored. In the present study, participants were required to learn to maximize reward during decision making. Undergraduates with elevated self-reported depressive symptoms received attention training toward positive stimuli prior to performing the decision-making task (n = 20; active training). The active-training group was compared to two other groups: undergraduates with elevated self-reported depressive symptoms who received placebo training (n = 22; placebo training) and a control group with low levels of depressive symptoms (n = 33; nondepressive control). The placebo-training depressive group performed worse and switched between options more than did the nondepressive controls on the reward maximization task. However, depressives that received active training performed as well as the nondepressive controls. Computational modeling indicated that the placebo-trained group learned more from negative than from positive prediction errors, leading to more frequent switching. The nondepressive control and active-training depressive groups showed similar learning from positive and negative prediction errors, leading to less-frequent switching and better performance. Our results indicate that individuals with elevated depressive symptoms are impaired at reward maximization, but that the deficit can be improved with attention training toward positive stimuli.
    Full-text · Article · Nov 2014 · Cognitive Affective & Behavioral Neuroscience
  • Source
    • "Feeding is a motivated behavior, driven by hunger (energy needs) but also by the reward salience of foods, represented by sensory (odor, visual appearance, taste, and texture) and physical (energy content) attributes of a given food (Mehiel and Bolles, 1988; Rolls, 2010; Beeler et al., 2012; Fernstrom et al., 2012; Desmarchelier et al., 2013; Li et al., 2013). While hunger provides the primary motivation to eat, food-seeking (wanting/liking) and ingestive behavior may be triggered by associations between the real or anticipated higher reward value of foods in a particular environmental context or because certain foods are imbued with hedonic properties (Berridge and Robinson, 2003; Berridge et al., 2009; Ferriday and Brunstrom, 2011; Ziauddeen et al., 2012). Conditioned (learned) stimuli can increase subliminal motivation to seek and consume foods during states of satiation and in excess of actual energetic demands, eventually leading to obesity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Eating behavior depends on associations between the sensory and energetic properties of foods. Healthful balance of these factors is a challenge for industrialized societies that have an abundance of food, food choices and food-related cues. Here, we were interested in whether appetitive conditioning changes as a function of age. Operant and pavlovian conditioning experiments (rewarding stimulus was a palatable food) in male mice (aged 3, 6, and 15 months) showed that implicit (non-declarative) memory remains intact during aging. Two other essential components of eating behavior, motivation and hedonic preference for rewarding foods, were also found not to be altered in aging mice. Specifically, hedonic responding by satiated mice to isocaloric foods of differing sensory properties (sucrose, milk) was similar in all age groups; importantly, however, this paradigm disclosed that older animals adjust their energy intake according to energetic need. Based on the assumption that the mechanisms that control feeding are conserved across species, it would appear that overeating and obesity in humans reflects a mismatch between ancient physiological mechanisms and today's cue-laden environment. The implication of the present results showing that aging does not impair the ability to learn stimulus-food associations is that the risk of overeating in response to food cues is maintained through to old age.
    Full-text · Article · Sep 2014 · Frontiers in Aging Neuroscience
Show more