Project

iGEM Bielefeld-CeBiTec 2014

Goal: Contribution to the iGEM Competition 2014

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
1
Reads
0 new
7

Project log

Simon A. B. Riedl
added 2 research items
Ecological power management is currently facing three challenges: the storage of electrical power, the development of renewable energy resources, which are not timely and locally synced with demand, and the increase of atmospheric carbon dioxide due to the use of fossil fuels. We address these challenges by implementing a proof of concept production of the biofuel isobutanol from carbon dioxide. In our project, a bacterial microcompartment from cyanobacteria, the carboxysome, was deployed in Escherichia. coli for carbon dioxide fixation under aerobic conditions. We further engineered E. coli to derive the energy for this process from electricity by implementing electron-mediator uptake and recycling. This ‘electricity’ pathway comprised proteins such as the furmarate reductase. Feasibility was analyzed in a self-constructed bioreactor. Ultimately, we established an isobutanol production pathway by heterologous expression of five genes from E. coli, Bacillus subtilis and Lactococcus lactis.
Ecological power management is currently facing three major challenges: the storage of electrical power, the development of renewable energy resources and the increase of atmospheric carbon dioxide due to the use of fossil fuels. Especially, when considering the decreasing fossil fuel reserves and the increasing consumption, new solutions are urgently needed. Therefore, we developed a concept to face these three challenges by engineering Escherichia coli. The concept comprises a biofuel production from carbon dioxide where the energy is supplied from external electricity. For the uptake of electrical power we developed an electrophilic E. coli that can be supplied with electrons by a mediator-based uptake and a feed-in loop within the citric acid cycle. The feasibility was tested in a self-made bioreactor. Furthermore, the idea to complete the whole Calvin cycle in E. coli by characterizing the three missing enzymes, including the RuBisCO was tested. Additionally, we deployed a bacterial microcompartment from cyanobacteria for carbon dioxide fixation under aerobic conditions and characterized a Bio-bricked pathway of the isobutanol production to complete our concept. Moreover, an antibiotic-free selection system based on the iGEM standard plasmid pSB1C3 was developed. This system could reduce the use of antibiotics within the iGEM community and beyond. https://blogs.plos.org/collections/igem-report-006/
Simon A. B. Riedl
added a project goal
Contribution to the iGEM Competition 2014