Project

https://kansas.academia.edu/DimitriosDendrinos

Goal: This link shows my current work

Also see:

https://dimitriosdendrinos.academia.edu/

Updates
0 new
2
Recommendations
0 new
0
Followers
0 new
4
Reads
0 new
29

Project log

Dimitrios S. Dendrinos
added an update
The paper is found here:
The paper's abstract:
A novel view of the Parthenon's structure is taken in this paper. Instead of analyzing the Parthenon's final configuration, either in its various reconstructions or in its current condition, the study draws the Temple's 3-d skeletal structure. Based on that sketch plan, the Parthenon's modulus and its grid pattern are derived. In closely examining this skeletal morphology, a number of findings emerge. The Parthenon was built on the basis of a critical ratio and a set of inter-connected angles, generated by following a set of instructions. Utilizing the sketch plan (the Parthenon's skeleton), the paper provides a mathematical optimization formulation, involving an objective function and a set of constraints. On the basis of that problem, one can derive, through the associated efficiency conditions, the entire Parthenon structure. Along the way, some topics of mathematical interest are presented and partially elaborated. Suggestions for further research are also provided.
 
Dimitrios S. Dendrinos
added a research item
A novel view of the Parthenon’s structure is taken in this paper. Instead of analyzing the Parthenon’s final configuration, either in its various reconstructions or in its current condition, the study draws the Temple’s 3-d skeletal structure. Based on that sketch plan, the Parthenon’s modulus and its grid pattern are derived. In closely examining this skeletal morphology, a number of findings emerge. The Parthenon was built on the basis of a critical ratio and a set of inter-connected angles, generated by following a set of instructions. Utilizing the sketch plan (the Parthenon’s skeleton), the paper provides a mathematical optimization formulation, involving an objective function and a set of constraints. On the basis of that problem, one can derive, through the associated efficiency conditions, the entire Parthenon structure. Along the way, some topics of mathematical interest are presented and partially elaborated. Suggestions for further research are also provided.
Dimitrios S. Dendrinos
added a project goal
This link shows my current work
Also see: