Project

The biomechanical determinants of cricket batting performance

Goal: The aim of this project is to identify the key kinematic, bat-ball impact, and launch parameters that best predict bat speed, ball launch speed, and carry distance during cricket batting. This will provide valuable information to players and coaches in the development of more effective hitting techniques and training methods, and form a basis for the continued assessment of the mechanics of generating high ball launch and bat speeds in cricket batting.

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
7
Reads
2 new
125

Project log

Stuart A. McErlain-Naylor
added a research item
Organismic, task, and environmental constraints are known to differ between skilled male and female cricket batters during power hitting tasks. Despite these influences, the techniques used in such tasks have only been investigated in male cricket batters. This study compared power hitting kinematics between 15 male and 15 female batters ranging from university to international standard. General linear models were used to assess the effect of gender on kinematic parameters describing technique, with height and body mass as covariates. Male batters generated greater maximum bat speeds, ball launch speeds, and ball carry distances than female batters on average. Male batters had greater pelvis-thorax separation in the transverse plane at the commencement of the downswing (β = 1.14; p = 0.030) and extended their lead elbows more during the downswing (β = 1.28; p = 0.008) compared to female batters. The hypothesised effect of gender on the magnitude of wrist uncocking during the downswing was not observed (β = −0.14; p = 0.819). The causes of these differences are likely to be multi-factorial, involving aspects relating to the individual players, their history of training experiences and coaching practices, and the task of power hitting in male or female cricket.
Stuart A. McErlain-Naylor
added a research item
The aim of this study was to determine the effect of delivery method on upper-body kinematics in cricketers playing a front foot drive and a back foot pull shot. Fourteen male cricketers were played both shots against a bowler, bowling machine, and Sidearm TM ball thrower. The availability of pre-release visual cues appears to affect upper-body kinematics during the pull shot but not the drive other than at the back shoulder. The Sidearm TM may represent a compromise between bowler and bowling machine when training the pull shot but coaches should consider differences in upper-body proximal-distal joint dominance.
Stuart A. McErlain-Naylor
added a research item
https://cricketcongress2019.lboro.ac.uk/wp-content/uploads/2019/07/Final-Book.pdf Background: Recent research has investigated the relationships between technique and bat speed during a cricket range hitting task in 20 male batsmen ranging from club to international standard 1. The separation between the pelvis and thorax segments in the transverse plane at the commencement of the downswing, and both lead elbow extension and wrist uncocking during the downswing explained 78% of the observed variation in maximum bat speed. However, no research to date has compared such kinematic parameters between male and female batters during power hitting. Aims: To compare power hitting kinematics between experienced male and female batters.
Stuart A. McErlain-Naylor
added 4 research items
https://www.sciencedirect.com/science/article/pii/S0167945718303026 The ability of a batsman to clear the boundary is a major contributor to success in modern cricket. The aim of this study was to identify technique parameters characterising those batsmen able to generate greater bat speeds, ball launch speeds, and carry distances during a range hitting task in cricket. Kinematic data were collected for 20 batsmen ranging from international to club standard, and a series of ball launch, bat-ball impact, and technique parameters were calculated for each trial. A stepwise multiple linear regression analysis found impact location on the bat face in the medio-lateral and longitudinal directions and bat speed at impact to explain 68% of the observed variation in instantaneous post-impact ball speed. A further regression analysis found the X-factor (separation between the pelvis and thorax segments in the transverse plane) at the commencement of the downswing, lead elbow extension, and wrist uncocking during the downswing to explain 78% of the observed variation in maximum bat speed during the downswing. These findings indicate that players and coaches should focus on generating central impacts with the highest possible bat speed. Training and conditioning programmes should be developed to improve the important kinematic parameters shown to generate greater bat speeds, particularly focussing on increased pelvis to upper thorax separation in the transverse plane.
https://shapeamerica.tandfonline.com/doi/full/10.1080/02640414.2017.1389484#.XQ1jAe7TWyU Three-dimensional kinematic data of bat and ball were recorded for 239 individual shots performed by twenty batsmen ranging from club to international standard. The impact location of the ball on the bat face was determined and assessed against the resultant instantaneous post-impact ball speed and measures of post-impact bat torsion and ball direction. Significant negative linear relationships were found between post-impact ball speed and the absolute distance of impact from the midline medio-laterally and sweetspot longitudinally. Significant cubic relationships were found between the distance of impact from the midline of the bat medio-laterally and both a measure of bat torsion and the post-impact ball direction. A "sweet region" on the bat face was identified whereby impacts within 2 cm of the sweetspot in the medio-lateral direction, and 4.5 cm in the longitudinal direction, caused reductions in ball speed of less than 6% from the optimal value, and deviations in ball direction of less than 10° from the intended target. This study provides a greater understanding of the margin for error afforded to batsmen, allowing researchers to assess shot success in more detail, and highlights the importance of players generating consistently central impact locations when hitting for optimal performance.
https://journals.sagepub.com/doi/abs/10.1177/1754337117723275 This study aimed to develop a methodology for accurate determination of the impact location of a cricket ball on the bat face, as well as the identification of bat–ball contact timing and post-impact instantaneous ball velocity in a whole-body kinematic data collection environment. Three-dimensional kinematic data of bat and ball were recorded during 14 batting strokes: 8 hitting a static ball and 6 against a bowling machine. Curves were fitted separately to the pre- and post-impact phases of the ball position data against time in three axes according to logarithmic equations determined from mechanical principles. Separate Fourier series models were similarly fitted to the four corners of the bat face against time during the downswing prior to ball impact. Time of impact for the dynamic ball trials was determined based on the intersection of pre- and post-impact curves, with impact location calculated from ball and bat face curves at this time. R² values for the goodness of fit of the ball and bat curves averaged 0.99 ± 0.04 and 1.00 ± 0.00 with root mean square errors of 7.5 ± 2.6 and 0.8 ± 0.2 mm, respectively. Calculated impact locations were assessed against measured impact locations derived from the impression imparted to a fine powder coating on the bat face, finding absolute differences of 6.4 ± 4.2 and 7.1 ± 4.4 mm in the transverse and longitudinal axes of the bat, respectively. Thus, an automated curve fitting methodology enables the accurate determination of cricket bat–ball impact characteristics for use in experimental investigations.
Stuart A. McErlain-Naylor
added a project goal
The aim of this project is to identify the key kinematic, bat-ball impact, and launch parameters that best predict bat speed, ball launch speed, and carry distance during cricket batting. This will provide valuable information to players and coaches in the development of more effective hitting techniques and training methods, and form a basis for the continued assessment of the mechanics of generating high ball launch and bat speeds in cricket batting.