Project

Synchromodal matching platforms: dynamic stochastic and coordinated optimization

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
1
Reads
0 new
13

Project log

Wenjing Guo
added a research item
Global synchromodal transportation involves the movement of container shipments between inland terminals located in different continents using ships, barges, trains, trucks, or any combination among them through integrated planning at a network level. One of the challenges faced by global operators is the matching of accepted shipments with services in an integrated global synchromodal transport network with dynamic and stochastic travel times. The travel times of services are unknown and revealed dynamically during the execution of transport plans, but the stochastic information of travel times are assumed available. Matching decisions can be updated before shipments arrive at their destination terminals. The objective of the problem is to maximize the total profits that are expressed in terms of a combination of revenues, travel costs, transfer costs, storage costs, delay costs, and carbon tax over a given planning horizon. We propose a sequential decision process model to describe the problem. In order to address the curse of dimensionality, we develop a reinforcement learning approach to learn the value of matching a shipment with a service through simulations. Specifically, we adopt the Q-learning algorithm to update value function estimations and use the epsilon-greedy strategy to balance exploitation and exploration. Online decisions are created based on the estimated value functions. The performance of the reinforcement learning approach is evaluated in comparison to a myopic approach that does not consider uncertainties and a stochastic approach that sets chance constraints on feasible transshipment under a rolling horizon framework.
Wenjing Guo
added 10 research items
This paper investigates a dynamic and stochastic shipment matching problem faced by network operators in hinterland synchromodal transportation. We consider a platform that receives contractual and spot shipment requests from shippers, and receives multimodal services from carriers. The platform aims to provide optimal matches between shipment requests and multimodal services within a finite horizon under spot request uncertainty. Due to the capacity limitation of multimodal services, the matching decisions made for current requests will affect the ability to make good matches for future requests. To solve the problem, this paper proposes an anticipatory approach which consists of a rolling horizon framework that handles dynamic events, a sample average approximation method that addresses uncertainties, and a progressive hedging algorithm that generates solutions at each decision epoch. Compared with the greedy approach which is commonly used in practice, the anticipatory approach has total cost savings up to 8.18% under realistic instances. The experimental results highlight the benefits of incorporating stochastic information in dynamic decision making processes of the synchromodal matching system.
With the increasing volumes of containers in global trade, efficient global container transport planning becomes more and more important. To improve the competitiveness in global supply chains, stakeholders turn to collaborate with each other at vertical as well as horizontal level, namely synchromodal transportation. Synchromodality is the provision of efficient, effective, and sustainable transport plans for all the shipments involved in an integrated network driven by advanced information technologies. However, the decision-making processes of a global synchromodal transport system is very complex. First, time-dependent travel times caused by traffic congestion need to be considered. Second, a dynamic approach that handles real-time shipment requests in a synchromodal network is required. Third, spot requests received from spot markets are unknown in advance. Fourth, travel time uncertainty is not handled yet for global synchromodal transport networks. Fifth, distributed approaches that stimulate cooperation among multiple stakeholders involved in global container transportation are still missing. This thesis addresses the above-mentioned challenges with dynamic, stochastic, and coordinated models.
Global intermodal transportation involves the movement of shipments between inland terminals located in different continents by using ships, barges, trains, trucks, or any combination among them through integrated planning at a network level. One of the challenges faced by global operators is the matching of shipment requests with transport services in an integrated global network. The characteristics of the global intermodal shipment matching problem include acceptance and matching decisions, soft time windows, capacitated services, and transshipments between multimodal services. The objective of the problem is to maximize the total profits which consist of revenues, travel costs, transfer costs, storage costs, delay costs, and carbon tax. Travel time uncertainty has significant effects on the feasibility and profitability of matching plans. However, travel time uncertainty has not been considered in global intermodal transport yet leading to significant delays and infeasible transshipments. To fill in this gap, this paper proposes a chance-constrained programming model in which travel times are assumed stochastic. We conduct numerical experiments to validate the performance of the stochastic model in comparison to a deterministic model and a robust model. The experiment results show that the stochastic model outperforms the benchmarks in total profits.