Updates
0 new
0
Recommendations
0 new
0
Followers
1 new
2
Reads
0 new
8

Project log

Lukas Zwirner
added 3 research items
The influence of the cell inclination on the heat transport and large-scale circulation in liquid metal convection - Volume 884 - Lukas Zwirner, Ruslan Khalilov, Ilya Kolesnichenko, Andrey Mamykin, Sergei Mandrykin, Alexander Pavlinov, Alexander Shestakov, Andrei Teimurazov, Peter Frick, Olga Shishkina
The large-scale circulation (LSC) of fluid is one of the main concepts in turbulent thermal convection as it is known to be important in global heat and mass transport in the system. In turbulent Rayleigh-Bénard convection (RBC) in slender containers, the LSC is formed of several dynamically changing convective rolls that are stacked on top of each other. The present study reveals the following two important facts: (i) the mechanism which causes the twisting and breaking of a single-roll LSC into multiple rolls is the elliptical instability and (ii) the heat and momentum transport in RBC, represented by the Nusselt (Nu) and Reynolds (Re) numbers, is always stronger (weaker) for smaller (larger) number n of the rolls in the LSC structure. Direct numerical simulations support the findings for n=1,…,4 and the diameter-to-height aspect ratio of the cylindrical container Γ=1/5, the Prandtl number Pr=0.1 and Rayleigh number Ra=5×105. Thus, Nu and Re are, respectively, 2.5 and 1.5 times larger for a single-roll LSC (n=1) than for a LSC with n=4 rolls.
Any tilt of a Rayleigh–Bénard convection cell against gravity changes the global flow structure inside the cell, which leads to a change of the heat and momentum transport. Especially sensitive to the inclination angle is the heat transport in low-Prandtl-number fluids and confined geometries. The purpose of the present work is to investigate the global flow structure and its influence on the global heat transport in inclined convection in a cylindrical container of diameter-to-height aspect ratio $\unicode[STIX]{x1D6E4}=1/5$ . The study is based on direct numerical simulations where two different Prandtl numbers $Pr=0.1$ and 1.0 are considered, while the Rayleigh number, $Ra$ , ranges from $10^{6}$ to $10^{9}$ . For each combination of $Ra$ and $Pr$ , the inclination angle is varied between 0 and $\unicode[STIX]{x03C0}/2$ . An optimal inclination angle of the convection cell, which provides the maximal global heat transport, is determined. For inclined convection we observe the formation of two system-sized plume columns, a hot and a cold one, that impinge on the opposite boundary layers. These are related to a strong increase in the heat transport.