Project

River Wensum Demonstration Test Catchment Project

Goal: To provide evidence to test the hypothesis that it is possible to cost effectively reduce the impact of agricultural diffuse water pollution on ecological function while maintaining food security through the implementation of multiple on-farm measures across whole river catchments using local expertise to solve local problems.

Date: 1 January 2010 - 30 September 2017

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
19
Reads
0 new
245

Project log

Richard James Cooper
added a research item
Sewage effluent discharged from wastewater treatment plants (WWTPs) is a major driver of nitrogen (N) and phosphorus (P) enrichment, but tertiary treatment methods such as P-stripping have previously been shown to mitigate eutrophication risk. The aim of this study was to evaluate the impacts of sewage effluent discharged from WWTPs with contrasting classifications of tertiary treatment on nutrient dynamics across the River Wensum catchment, UK. River water samples were collected from 20 locations across the catchment at monthly intervals between October 2010 and September 2013, with 677 samples collected in total and analysed for a suite of hydrochemical parameters. The 20 sampling locations were divided into four classifications based on the type of upstream WWTP: (1) no WWTP; (2) WWTPs without P-stripping; (3) WWTPs with and without P-stripping; (4) WWTPs with P-stripping. Results revealed substantial overlaps in riverine nutrient composition making differentiation between classifications difficult. The majority of N (>97%) and P (~75%) was present in dissolved bioavailable forms across all sites and there was no significant difference in total N speciation between classifications. Total P (TP) speciation did, however, reveal higher proportions of particulate P at sites with no WWTP, indicating a greater P contribution of agricultural origin. Ratios of total dissolved to particulate P (TDP:TPP) and chloride concentrations proved effective discriminators of agricultural and sewage P, respectively, but phosphate‑boron ratios (PO4:B) were ineffective discriminators in this catchment. Most importantly, there was no evidence that P-stripping reduced overall TP concentrations downstream of WWTPs, despite evidence of a per capita reduction, nor reduced the proportion of dissolved P released. These findings were attributed to P-stripping facilities serving larger populations and thus releasing greater effluent P load, thereby demonstrating that the presence of tertiary P-stripping alone is insufficient to overcome population pressures and ensure that rivers achieve good hydrochemical status.
Richard James Cooper
added a research item
This dataset contains riverine hydrochemical data generated at monthly intervals between 2010 and 2016 from 20 sites across the River Wensum catchment, UK. Data were obtained via manual grab sampling of river water from each of the 20 locations across the catchment, followed by subsequent laboratory analysis to determine concentrations of nutrients, carbon, major ions and suspended solids.
Richard James Cooper
added 4 research items
Farming to protect our water resources - results from UK farm trials: 2011-2018
Evidence presented from the River Wensum Demonstration Test Catchment (DTC)
A high-temporal resolution fluvial sediment source apportionment model, set within an empirical Bayesian framework , is presented for the River Wensum Demonstration Test Catchment (DTC), UK. Direct X-ray fluorescence (XRF) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis of sediment covered filter papers were used in conjunction with ISCO automatic water samplers to monitor suspended particulate matter (SPM) geochemistry at high-temporal resolution throughout the progression of five heavy precipitation events during 2012-2013. Exploiting the spatial and temporal variation in four potential sediment source areas and SPM geochemistry respectively, we are able to apportion sediment contributions from eroding stream channel banks, arable topsoils, damaged road verges and agricultural field drains at 60-120 minute resolution. For all monitored precipitation episodes, pre-and post-event conditions are dominated by elevated SPM calcium concentrations that indicate major sediment inputs from carbonate-rich subsurface sources. Conversely, precipitation events coincide with an increase in concentrations of clay-associated elements and a consequent increase in predicted contributions from surface sources. Employing a Gibbs sampling Markov Chain Monte-Carlo mixing model procedure has enabled full characterisation of both spatial geochemical variability and instrument precision to quantify uncertainty around posterior distributions. All model source apportionment estimates correspond favourably with understanding of the regional geology, analysis of hysteresis behaviour, and visual observations of catchment processes. The results presented here demonstrate how to directly analyse SPM trapped on filter papers by spectroscopy to yield the high-temporal resolution source apportionment estimates required by catchment managers to help mitigate the deleterious effects of land-to-river sediment transfer.
Richard James Cooper
added a research item
In 2010, the UK government established the Demonstration Test Catchment (DTC) initiative to evaluate the extent to which on-farm mitigation measures can cost-effectively reduce the impacts of agricultural water pollution on river ecology whilst maintaining food production capacity. A central component of the DTC platform was the establishment of a comprehensive network of automated, web-based sensor technologies to generate high-temporal resolution (30 min) empirical datasets of surface water, groundwater and meteorological parameters over a long period (2011–2018). Utilising 8.9 million water quality measurements generated for the River Wensum, this paper demonstrates how long-term, high-resolution monitoring of hydrochemistry can improve our understanding of the complex temporal dynamics of riverine processes from 30 min to annual timescales. This paper explores the impact of groundwater-surface water interactions on instream pollutant concentrations (principally nitrogen, phosphorus and turbidity) and reveals how varying hydrochemical associations under contrasting flow regimes can elicit important information on the dominant pollution pathways. Furthermore, this paper examines the relationships between agricultural pollutants and precipitation events of varying magnitude, whilst demonstrating how high-resolution data can be utilised to develop conceptual models of hydrochemical processes for contrasting winter and summer seasons. Finally, this paper considers how high-resolution hydrochemical data can be used to increase land manager awareness of environmentally damaging farming operations and encourage the adoption of more water sensitive land management practices.
Richard James Cooper
added a research item
Mitigating agricultural water pollution requires changes in land management practices and the implementation of on-farm measures to tackle the principal reasons for water quality failure. However, a paucity of robust empirical evidence on the hydrological functioning of river catchments can be a major constraint on the design of effective pollution mitigation strategies at the catchment-scale. In this regard, in 2010 the UK government established the Demonstration Test Catchment (DTC) initiative to evaluate the extent to which on-farm mitigation measures can cost-effectively reduce the impacts of agricultural water pollution on river ecology while maintaining food production capacity. A central component of the DTC platform has been the establishment of a comprehensive network of automated, web-based sensor technologies to generate high-temporal resolution empirical datasets of surface water, soil water, groundwater and meteorological parameters. In this paper, we demonstrate how this high-resolution telemetry can be used to improve our understanding of hydrological functioning and the dynamics of pollutant mobilisation and transport under a range of hydrometerological and hydrogeological conditions. Furthermore, we demonstrate how these data can be used to develop conceptual models of catchment hydrogeological processes and consider the implications of variable hydrological functioning on the performance of land management changes aimed at reducing agricultural water pollution. Keywords: River, Agriculture, Soil moisture, Groundwater, Surface water, Water pollution
Richard James Cooper
added a research item
Metalled roads have been shown to act as a major pathway for land-to-river sediment transfer, but there currently exists limited research into mitigation solutions to tackle this pollution source. The aim of this study was to assess the effectiveness of three roadside constructed wetlands, installed in September 2016, at reducing sediment enrichment in a tributary of the River Wensum, UK. Two wetland designs were trialled (linear and ‘U-shaped’), both of which act as settling ponds to encourage entrained sediment to fall out of suspension and allow cleaner water to discharge into the river. Wetland efficiency was monitored through automated, high-resolution (30 min) turbidity probes installed upstream and downstream of the wetlands, providing a near-continuous record of river turbidity before (October 2011 – August 2016) and after (November 2016 – February 2018) installation. This was supplemented by lower resolution monitoring of the wetland inflows and outflows, as well as an assessment of sediment and nutrient accumulation rates within the linear wetland. Results revealed median river sediment concentrations decreased up to 14% after wetland construction and sediment load decreased by up to 82%, although this was largely driven by low river discharge post-installation. Median sediment concentrations discharging from the linear wetland (7.2 mg L-1) were higher than the U-shaped wetland (3.9 mg L-1), confirming that a longer flow pathway through wetlands can improve sediment retention efficiency. After 12 months of operation, the linear wetland had retained 7,253 kg (305 kg ha-1 y-1) of sediment, 11.6 kg (0.5 kg ha-1 y-1) of total phosphorus, 29.7 kg (1.3 kg ha-1 y-1) of total nitrogen and 400 kg (17 kg ha-1 y-1) of organic carbon. This translates into mitigated pollutant damage costs of £392 for sediment, £148 for phosphorus and £13 for nitrogen, thus giving a combined total mitigated damage cost of £553 y-1. With the linear wetland costing £3,411 to install and £145 – 182 y-1 to maintain, this roadside constructed wetland has an estimated payback time 8 years, making it a cost-effective pollution mitigation measure for tackling sediment-enriched road runoff that could be widely adopted at the catchment-scale.
Richard James Cooper
added 2 research items
Excess nutrients in surface waters, such as phosphorus (P) from agriculture, result in poor water quality, with adverse effects on ecological health and costs for remediation. However, understanding and prediction of P transfers in catchments have been limited by inadequate data and over-parameterised models with high uncertainty. We show that, with high temporal resolution data, we are able to identify simple dynamic models that capture the P load dynamics in three contrasting agricultural catchments in the UK. For a flashy catchment, a linear, second-order (two pathways) model for discharge gave high simulation efficiencies for short-term storm sequences and was useful in highlighting uncertainties in out-of-bank flows. A model with non-linear rainfall input was appropriate for predicting seasonal or annual cumulative P loads where antecedent conditions affected the catchment response. For second-order models, the time constant for the fast pathway varied between 2 and 15 h for all three catchments and for both discharge and P, confirming that high temporal resolution data are necessary to capture the dynamic responses in small catchments (10–50 km2). The models led to a better understanding of the dominant nutrient transfer modes, which will be helpful in determining phosphorus transfers following changes in precipitation patterns in the future.
Purpose Wastewater effluent discharged into rivers from sewage treatment works (STWs) represents one of the most important point sources of soluble reactive phosphorus (SRP) pollution and is a major driver of freshwater eutrophication. In this study, we assess the ability of riverbed sediments to act as a self-regulating buffering system to reduce SRP dissolved in the water column downstream of STW outflows. Materials and methods River water and riverbed sediment samples were collected from ten tributary outlets across the River Wensum catchment, Norfolk, UK, at monthly intervals between July and October 2016, such that 40 sediment and 40 water samples were collected in total. Of these locations, five were located downstream of STWs and five were on tributaries without STWs. Dissolved SRP concentrations were analysed, and the equilibrium phosphorus concentration (EPC0) of each sediment sample was measured to determine whether riverbed sediments were acting as net sources or sinks of SRP. Results and discussion The mean SRP concentration downstream of STWs (382 μg P L⁻¹) was double that of sites without a STW (185 μg P L⁻¹), whilst the mean EPC0 for effluent impacted sites (105 μg P L⁻¹) was 70% higher than that recorded at unaffected sites (62 μg P L⁻¹). Regardless of STW influence, riverbed sediments across all ten sites almost always acted as net sinks for SRP from the overlying water column. This was particularly true at sites downstream of STWs which displayed enhanced potential to buffer the river against increases in SRP released in sewage effluent. Conclusions Despite EPC0 values revealing riverbed sediments were consistently acting as sinks for SRP, elevated SRP concentrations downstream of STWs clearly demonstrate the sediments have insufficient SRP sorption capacity to completely buffer the river against effluent discharge. Consequently, SRP concentrations across the catchment continue to exceed recommended standards for good chemical status, thus emphasising the need for enhanced mitigation efforts at STWs to minimise riverine phosphorus loading.
Nick Garrard
added a research item
PhD work investigating N loss pathways from an arable catchment in the UK. Previous mass balance work has identified a 31% discrepancy between N inputs and N measured at the catchment outlet, this project is aimed at assessing the significance of the hyporheic zone in this removal of N.
Richard James Cooper
added 5 research items
A high-temporal resolution fluvial sediment source apportionment model, set within an empirical Bayesian framework, is presented for the River Wensum Demonstration Test Catchment (DTC), UK. Direct X-ray fluorescence (XRF) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis of sediment covered filter papers were used in conjunction with ISCO automatic water samplers to monitor suspended particulate matter (SPM) geochemistry at high-temporal resolution throughout the progression of five heavy precipitation events during 2012-2013. Exploiting the spatial and temporal variation in four potential sediment source areas and SPM geochemistry respectively, we are able to apportion sediment contributions from eroding stream channel banks, arable topsoils, damaged road verges and agricultural field drains at 60-120 minute resolution. For all monitored precipitation episodes, pre- and post-event conditions are dominated by elevated SPM calcium concentrations that indicate major sediment inputs from carbonate-rich subsurface sources. Conversely, precipitation events coincide with an increase in concentrations of clay-associated elements and a consequent increase in predicted contributions from surface sources. Employing a Gibbs sampling Markov Chain Monte-Carlo mixing model procedure has enabled full characterisation of both spatial geochemical variability and instrument precision to quantify uncertainty around posterior distributions. All model source apportionment estimates correspond favourably with understanding of the regional geology, analysis of hysteresis behaviour, and visual observations of catchment processes. The results presented here demonstrate how to directly analyse SPM trapped on filter papers by spectroscopy to yield the high-temporal resolution source apportionment estimates required by catchment managers to help mitigate the deleterious effects of land-to-river sediment transfer.
Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ∼76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations. Key Points An OFAT sensitivity analysis of sediment fingerprinting mixing models is conducted Bayesian models display high sensitivity to error assumptions and structural choices Source apportionment results differ between Bayesian and frequentist approaches
Many of the commonly used analytical techniques for assessing the properties of fluvial suspended particulatematter (SPM) are neither cost effective nor time efficient, making them prohibitive to long-term high-resolution monitoring. We present an in-depth methodology utilizing two types of spectroscopy which, when combined with automatic water samplers, can generate accurate, high-temporal resolution SPM geochemistry data, inexpensively and semi-destructively, directly from sediment covered filter papers. AcombinedX-ray fluorescence spectroscopy and diffuse reflectance infrared Fourier transformspectroscopy approach is developed to estimate concentrations for a range of elements (Al, Ca, Ce, Fe, K,Mg,Mn, Na, P, Si, Ti) and compounds (organic carbon, Aldithionate, Aloxalate, Fedithionate, and Feoxalate) within SPM trapped on quartz fibre filters at masses as low as 3 mg. Calibration models with small prediction errors are derived, along with mass correction factor models to account for variations in retained SPM mass. Spectral pre-processing methods are shown to enhance the reproducibility of results for some compounds, and the importance of filter paper selection and homogeneous sample preparation in minimizing spectral interference is emphasized. The geochemical signal from sediment covered filter papers is demonstrated to be time stable enabling samples to be stored for several weeks prior to analysis. Example results obtained during a heavy precipitation event in October 2012 demonstrate the methodology presented here has considerable potential to be utilized for high-resolution monitoring of SPM geochemistry under a range of in-stream hydrological conditions.
Andrew A. Lovett
added a research item
This paper describes a study on the Salle Farms estate in Norfolk to assess the effectiveness of a cover crop (oilseed radish) and reduced tillage methods as mitigation measures for controlling diffuse pollution from agriculture. Results from porous pot sampling of nitrate in soil water indicate a substantial contrast between the fields with and without cover crops: many of the concentrations in the former being an order of magnitude lower than the latter. This result was confirmed by measurements of nitrate in field drains. Financial returns for the following crop of spring beans indicated that even though the variable and application costs were higher in the cover crop fields, the bean yields were also higher so that ultimately there was very little difference in the gross margins. All the nine fields provided a good return, illustrating that is it possible to reduce agricultural pollution without compromising farm productivity.
Richard James Cooper
added 6 research items
The efficacy of cover crops and non-inversion tillage regimes at minimising farm-scale nutrient losses were assessed across a large, commercial arable farm in Norfolk, UK. The trial area, covering 143 ha, was split into three blocks: winter fallow with mouldboard ploughing (Block J); shallow non-inversion tillage with a winter oilseed radish (Raphanus sativus) cover crop (Block P); and direct drilling with a winter oilseed radish cover crop (Block L). Soil, water and vegetation chemistry across the trial area were monitored over the 2012/13 (pre-trial), 2013/14 (cover crops and non-inversion tillage) and 2014/15 (non-inversion tillage only) farm years. Results revealed oilseed radish reduced nitrate (NO3-N) leaching losses in soil water by 75–97% relative to the fallow block, but had no impact upon phosphorus (P) losses. Corresponding reductions in riverine NO3-N concentrations were not observed, despite the trial area covering 20% of the catchment. Mean soil NO3-N concentrations were reduced by ∼77% at 60–90 cm depth beneath the cover crop, highlighting the ability of deep rooting oilseed radish to scavenge nutrients from deep within the soil profile. Alone, direct drilling and shallow non-inversion tillage were ineffective at reducing soil water NO3-N and P concentrations relative to conventional ploughing. Applying starter fertiliser to the cover crop increased radish biomass and nitrogen (N) uptake, but resulted in net N accumulation within the soil. There was negligible difference between the gross margins of direct drilling (£731 ha−1) and shallow non-inversion tillage (£758 ha−1) with a cover crop and conventional ploughing with fallow (£745 ha−1), demonstrating farm productivity can be maintained whilst mitigating diffuse pollution. The results presented here support the wider adoption of winter oilseed radish cover crops to reduce NO3-N leaching losses in arable systems, but caution that it may take several years before catchment-scale impacts downstream are detected.
Purpose A small number of recent studies have linked daily cycles in stream turbidity to nocturnal bioturbation by aquatic fauna, principally crayfish, and demonstrated this process can significantly impact upon water quality under baseflow conditions. Adding to this limited body of research, we use high-resolution water quality monitoring data to investigate evidence of diel turbidity cycles in a lowland, headwater stream with a known signal crayfish (Pacifastacus leniusculus) population and explore a range of potential causal mechanisms. Materials and methods Automatic bankside monitoring stations measured turbidity and other water quality parameters at 30-min resolution at three locations on the River Blackwater, Norfolk, UK, during 2013. Specifically, we focused on two 20-day periods of baseflow conditions during January and April 2013 which displayed turbidity trends typical of winter and spring seasons, respectively. The turbidity time-series, which were smoothed with 6.5-h Savitzky-Golay filters to highlight diel trends, were correlated against temperature, stage, dissolved oxygen and pH to assess the importance of abiotic influences on turbidity. Turbidity was also calibrated against suspended particulate matter (SPM) over a wide range of values via linear regression. Results and discussion Pronounced diel turbidity cycles were found at two of the three sites under baseflow conditions during April. Spring night-time turbidity values consistently peaked between 21:00 and 04:00 with values increasing by ~10 nephelometric turbidity units (NTU) compared with the lowest recorded daytime values which occurred between 10:00 and 14:00. This translated into statistically significant increases in median midnight SPM concentration of up to 76 % compared with midday, with night-time (18:00–05:30) SPM loads also up to 30 % higher than that recorded during the daytime (06:00–17:30). Relating turbidity to other water quality parameters exhibiting diel cycles revealed there to be neither any correlation that might indicate a causal link nor any obvious mechanistic connections to explain the temporal turbidity trends. Diel turbidity cycles were less prominent at all sites during the winter. Conclusions Considering the seasonality and timing of elevated turbidity, visual observations of crayfish activity and an absence of mechanistic connections with other water quality parameters, the results presented here are consistent with the hypothesis that nocturnal bioturbation is responsible for generating diel turbidity cycles under baseflow conditions in headwater streams. However, further research in a variety of fluvial environments is required to better assess the spatial extent, importance and causal mechanisms of this phenomenon.
Richard James Cooper
added a project goal
To provide evidence to test the hypothesis that it is possible to cost effectively reduce the impact of agricultural diffuse water pollution on ecological function while maintaining food security through the implementation of multiple on-farm measures across whole river catchments using local expertise to solve local problems.