Project

Quantumgravity

Goal: The goal of the project is to combine quantum physics, gravity and general relativity. Additionally, that combination is tested by comparisons with observations, thereby only three numerical inputs are used: the three fundamental constants of nature, the gravitational constant G, the velocity c of light and the Planck constant h. Moreover, various problems of physics are solved, and measurable predictions are obtained (see Carmesin, Hans – Otto (2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster).
Firstly, the era of cosmic inflation has been explained, the problems of the horizon and of the flatness are solved and the problem of Reheating is avoided (see Carmesin, Hans – Otto (2017) Vom Big Bang bis heute – Model for the Dynamics of Space. Berlin: Verlag Dr. Köster. Carmesin, Hans – Otto (May 2018) Entstehung dunkler Materie durch Gravitation – Model for the Dynamics of Space and the Emergence of Dark Matter. Berlin: Verlag Dr. Köster. Carmesin, Hans – Otto (November 2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster).
Secondly, the formation of dark matter has been modeled (see Carmesin, Hans – Otto (May 2018) Entstehung dunkler Materie durch Gravitation – Model for the Dynamics of Space and the Emergence of Dark Matter. Berlin: Verlag Dr. Köster. Carmesin, Hans – Otto (November 2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster).
Thirdly, the formation of dark energy has been modeled. Thereby, the problem of different measured Hubble constants is solved (see Carmesin, Hans – Otto (July 2018) Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy. Berlin: Verlag Dr. Köster. Carmesin, Hans – Otto (November 2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster).

Date: 1 January 2015

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
9
Reads
0 new
90

Project log

Hans-Otto Carmesin
added a research item
Present-day physics is based on two fundamental theories: General relativity including gravity describes spacetime. Quantum physics describes minimal portions occurring in nature. However, we live in one world. Now, we unify these theories! For it, we start with four basic physical principles, each founded by observation and by thought experiment, independently. These principles essentially are special relativity, the equivalence principle, Gaussian gravity and the fact that vacuum is an entity, the dynamics of which can be derived from the other three principles. Using these principles, we derive the postulates of quantum physics, and, in a semiclassical limit, we derive general relativity. Using our unification, we provide a solution of the EPR – paradox: In general relativity, the velocity of light is the highest velocity. In contrast, correlations among so-called entangled quanta can spread faster than light. Now, our unification implies that correlations among entangled quanta can spread faster than light. Moreover, our unification implies a list of solutions of fundamental problems. For instance, our unification implies dark energy, the density of the vacuum observed in cosmology. Furthermore, we provide several tests of our unification. Our results are in precise accordance with observation, whereby we do not apply any fit, of course. On the basis of the four basic physical principles, we derive our results explicitly. So, every interested reader can derive all results on her or his own. Thus, readers are enabled to apply a full self-control of the unification. Thereby, you can achieve a high level of founded independent thinking and deciding. In this manner, you can gain many insights about nature, and you can develop your self-esteem.
Hans-Otto Carmesin
added 3 research items
Matter is an essential concept. Indeed, also fundamental interactions can be transmitted by ele-mentary particles with mass. This fact had become a problem, as the usual principles of least ac-tion and gauge invariance predicted particles of interaction without mass. That problem has been solved by the proposed Higgs mechanism: vacuum exhibits a phase transition that forms mass. However, that mechanism does not provide answers for essential questions: By what mechanism can vacuum generate mass? What spectrum does the vacuum provide in the process of generat-ing mass? Here, my theory of vacuum is presented. That theory provides all parameters of the standard model of cosmology, and that theory provides answers to the above two questions. In this paper, I analyse the didactical perspective of the topic, including the Higgs mechanism as well as the dynamics and spectrum of vacuum. I tested that topic in two learning groups: a research club for classes 8 to 13 and a general studies course at the university Bremen. I report about the experience with the use of the topic in the two learning groups. The paper has been published in PhyDid B
The continuous expansion of space since the Big Bang has been a great discovery of mankind. However, that continuous expansion is incomplete, as it fails to describe the physics at very high density and high energy of radiation quanta. In this paper, we provide a solution of that incom-pleteness problem by developing and analyzing a droplet model: Droplets of a dimension form and grow, as soon as the density falls below a corresponding critical density. At that dimensional phase transition, the light horizon increases in an extremely rapid manner. As a consequence, the horizon problem is solved. The paper has been published in PhyDid B
Quantum physics is very successful in describing nature and developing technology. However, quantum physics has not yet been really understood. Instead, quantization procedures and postulates had been proposed without derivation from more general physics. Now, quantum physics has been derived as a natural consequence of the dynamics of vacuum. These dynamics, in turn, have been derived from gravity and relativity. Thus, quantum physics is a natural consequence of gravity and relativity. In this paper, I analyse the didactical perspective of the topic. For it, I derive the dynamics of the vacuum, and there from, I derive quantum physics. On that basis, I propose a didactical concept for a course of quantum physics. I tested that concept in two learning groups: a research club for classes 8 to 13 and a general studies course at the university Bremen. I report about the experience with the use of that concept in the two learning groups. The paper has been published in PhyDid B
Hans-Otto Carmesin
added a research item
Electromagnetic interactions are omnipresent in everyday life. These are part of the electroweak interactions, including the Higgs mechanism. However, the nature and microscopic structure thereof were a mystery. That mystery is solved in this book. We derive the observed charges and masses of the electroweak interaction from the equivalence principles, gravity and relativity, by analyzing the vacuum. We derive and clarify the origin of electroweak interactions: - Vacuum forming since the Big Bang constitutes space, time and cosmic phase transitions with a large scale energy spectrum. - That spectrum causes electroweak charges and masses. - Thereby, two-dimensional charge space forms. - Hereby, the electric charge, the weak angle, a non-electric charge, a hypercharge, an isospin charge and isospin form. - Electroweak masses originate from transitions at the large scale spectrum. Using the local principles of the formation of vacuum, we derive general relativity and results beyond: the density of vacuum, quantum physics, cosmic phase transitions as well as the electroweak interactions, charges and masses. Our results are in precise accordance with observation, whereby we do not execute any fit. Invited to discover the nature of electromagnetic and weak interactions are classes from grade 10 or higher, courses, research clubs, enthusiasts, observers, experimentalists, mathematicians, natural scientists, researchers …
Hans-Otto Carmesin
added a research item
In our universe, distances have increased since the Big Bang. This is directly indicated by the redshift of distant galaxies or of the cosmic microwave background. Usually, that increase of distances is explained by a continuous expansion of space according to general relativity. However, that explanation is very incomplete. This is indicated by the era of cosmic 'inflation'. In addition, the explanation of that era by the standard model of cosmology is hypothetic, problematic and not based on a fundamental concept. In contrast, the era of cosmic 'inflation' is derived and explained by physically founded phase transitions by a discontinuous change of space. These phase transitions provide the spectrum of the vacuum. With it, the density of vacuum is derived here. Moreover, the local value of the Hubble constant has been derived on the basis of that spectrum. Furthermore, many basic problems in elementary particle physics and in fundamental interactions have been solved by using that spectrum. For instance, the Higgs mechanism and the vacuum expectation value of elementary particle physics have been derived and explained. In this paper, we present a geometric derivation of the spectrum of vacuum. This provides further evidence and clarity. Published at: Hans-Otto Carmesin. "Geometric Derivation of the Spectrum of Vacuum.” International Journal of Engineering Science Invention (IJESI), Vol. 11(04), 2022, PP 01-11. Journal DOI- 10.35629/6734
Hans-Otto Carmesin
added 3 research items
Various observations of the Hubble constant H0 provide different values. That problem is called H0-tension. Here a physical explanation of the H0-tension is provided: Each observed value depends on the time or redshift of the emission of the used probe, as a consequence of the time evolution of the universe. This causes a large increase of H0 in the late universe. Moreover, the under-density at the local universe causes a small decrease of H0. A quantum gravity theory of dark energy is in precise accordance with observation. Thereby, no fit is executed, of course.
Since Planck discovered quantization in 1900, the nature of quanta was a mystery. That problem is solved in this book. We derive the postulates of quantum physics from the equivalence principles, gravity and relativity, by analyzing the vacuum. We clarify various conundrums of quanta: - We derive nonlocality. - We find the origin of the Schrödinger equation. - We find the origin of the probabilities of quanta. - We find the basis of the Planck constant h. - We find a generalized Schrödinger equation. - We find the origin of quantum gravity. - We discover how quanta, vacuum and curved space are related. Using the concepts of space, time, gravity and vacuum, we discover how vacuum propagates at the velocity of light. We realize how that propagation causes quantization. We apply that propagation to the calculation of the density parameter ΩΛ of the vacuum of the universe. Our result is in precise accordance with observation, whereby we do not apply any fit. Invited to discover the nature of quanta are classes from grade 10 or higher, courses, research clubs, enthusiasts, observers, experimentalists, mathematicians, natural scientists, researchers …
The continuous expansion of space since the Big Bang has been a great discovery of mankind. However, that continuous expansion is incomplete, as it fails to describe the physics at very high density and small light radii. In this paper, we provide a solution of that incompleteness problem by developing and analyzing a droplet model: Droplets of high dimensional vacuum form and grow, as soon as the density exceeds a corresponding critical density. At these dimensional phase transitions, the light horizon increases in an extremely rapid manner. As a consequence, the horizon problem is solved. The paper has been published in: International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319-6734, ISSN (Print): 2319-6726 www.ijesi.org ||Volume 10 Issue 8 Series II || August 2021 || PP 34-38
Hans-Otto Carmesin
added a research item
Question Our observable universe ranges from the light horizon at a distance of 4.1 ∙ 10 to the power of 26 m towards the Planck scale at lengths of 1.6 ∙ 10 to the power of -35 m. Corresponding bodies are galaxy clusters, our home region of galaxies Laniakea, our Milky Way, our Solar System, Earth, cities, villages, houses, ourselves and elementary particles. How do these different bodies interact? The heavenly bodies mainly interact by gravity. In contrast, most forces among bodies of everyday life are based on the electric interaction. Gravity and the electric interaction are regarded as two fundamental interactions. However, are these two interactions really fundamentally different? Discovery We discover the formation of the elementary charge based on quantum gravity. Hereby the difference between theory and experiment amounts to five millionth of a percent. Of course, we use no fit parameters. We show how classical electrodynamics and quantum electrodynamics are both based on our finding. Perspective I derived a new theory of quantum gravity. It describes physics ranging from the Planck scale towards the light horizon. With it, I discovered results in cosmology, general relativity and particle physics: In the standard model of cosmology, there are six parameters. One is independent, as it describes the time after the Big Bang. I derived the other parameters from quantum gravity, using no fit. The standard model of elementary particles essentially describes masses of particles and three fundamental interactions: electric, weak and strong interaction. Using quantum gravity, I derived the mass of the Higgs boson, which in turn causes the masses of the other particles, except neutrinos. For these, I derived the cosmological constant of neutrino masses. In this book, we apply the above findings in order to derive the formation of the elementary charge and electric interaction. So the electric charge and electric interaction are not fundamental. It will be interesting and challenging to use a theory ranging from the Planck scale towards the light horizon, in order to investigate other properties of elementary particles. Comprehensive Explanation In this book we derive all findings in a systematic, clear and smooth manner. We summarize our results by many definitions, propositions and theorems. We are classes from grade 10 or higher, courses, research clubs, enthusiasts, observers, experimentalists, mathematicians, natural scientists, researchers …
Hans-Otto Carmesin
added 4 research items
Kurzfassung In unserem Beitrag stellen wir eine Lösung des seit 1970 bekannten Horizontproblems vor, wel-ches die Frage aufwirft, wie die Lichtwellen seit dem Zeitpunkt des Urknalls den Horizont des ex-pandierenden Universums thermalisieren konnten. Unser Lösungsweg bedient sich Berechnungen, Diagrammen, sowie eines eigens entwickelten Zeitverlaufs. Diesen haben wir bereits in dem Bei-trag "Solution of a Density Problem in the Early Universe" in der Zeitschrift PhyDid B pp. 43-46 (Frühjahrstagung 2020) vorgestellt. In diesem Zeitverlauf nutzen wir dimensionale Übergänge, welche im direkten Zusammenhang zur Größe des Universums und der somit von den Lichtwellen zu überwindenden Distanz stehen. Dadurch können wir darstellen, wie durch die anfänglich gro-ßen Dimensionen, die Distanzen gering waren und die Lichtwellen früh den Horizont thermalisie-ren konnten. Abstract In our article we will show a solution for the horizon problem. The problem is known since 1970. It´s about the question how the light waves could thermalize the hole expanding universe since the big bang. Our solution will use calculations, diagrams and a new self-designed time evolution. We had shown this time evolution in the article "Solution of a Density Problem in the Early Universe" out of the journal PhyDid B pp. 43-46 (spring conference 2020). In this time evolution we use dimensional transitions, which are connected to the size of the universe. So it also is connected to the distance which has to be reached from the light. With those methods we can explain how the early big dimensions could take care for the small distances and how the light was able to thermal-ize the space within horizon. The paper has been published in PhyDid B
In the early universe, the density reached the order of the Planck density. As a result, there were gravitational instabilities in which dimensional transitions occurred. It should be taken into account that the early universe consists only of photons and black holes. Photons are bosons. The quantum physical model for many bosons, such as photons, is the Bose gas model. Here we can study the dynamics of the early universe more accurately (Hans-Otto Carmesin (2020): The Universe Developing from Zero-Point Energy Discovered by Making Photos, Experiments and Calculations. Berlin: Verlag Dr. Köster). This research aims to determine and apply the critical densities of dimensional phase transitions in Bose gases with the use of a computer simulation. This new type of phase transitions could be used in the future to apply them to the horizon problem. This might accordingly lead to the solution of the problem without including a hypothetical entity such as the so called *inflation field*. The project is presented as an example for teamwork in an ensemble of projects in the field of quantum gravity that are carried out in a research club at our school. The paper has been published in PhyDid B
Kurzfassung In diesem Beitrag setzen wir uns mit der Dynamik des frühen Universums auseinander. Dafür werden wir uns eine einfache Gleichung zur Berechnung herleiten und wir werden eine Methode zur Berechnung aufzeigen. Im Anschluss werden wir dann unsere Methode überprüfen und unsere Ergebnisse interpretieren. Anhand der Interpretation werden wir noch mögliche Verbesserungen und Anwendungsbereiche diskutieren. Abstract In this paper we treat the dynamics of the universe and we will derive an equation. The derivation is intended to show that the equation can be solved and we will test whether the results obtained contain errors. In the last part of the essay we will discuss the possibilities how our program can be used and in which cases it makes sense to use it. 1. Expansion of the universe We will take a closer look at the expansion in the early universe. To do this, we calculate the extent of the Light Horizon over time, the largest distance we can observe on earth. Fig.1: Graph that shows the evolution of the density and the extent of the Light Horizon in our universe (Carmesin (2021)). Since equations can change throughout multiple factors, we will look at the Planck era and will look for an equation here. To receive an equation that we can use later, we look at a ball with a radius that can be used as a model for our universe. For further additions, we need a formula that also depends on the density  as it is not constant. We also need an equation that is not fixed in one dimension D. We use the following formula (Carmesin (2021)): = (2 * ) − 1 +1 {1} The dimension D changes at critical densities but is constant in the time periods between the transitions. In the next step, we take the derivative of equation {1} by time and by . As we want to look at  and its time evolution we have to combine both of those equations. The derivation of a by  can be calculated very quickly. The paper has been published in PhyDid B
Hans-Otto Carmesin
added 2 research items
The observable universe ranges from huge galaxies near the light horizon at a distance of 4.1 ∙ 10^26 m, via elementary particles at a hierarchy of scales, towards smallest objects at the Planck scale at lengths of 1.6 ∙ 10^-35 m. How did these very different objects form and develop? We present an answer by deriving a physically founded and critically tested unified theory of cosmological and elementary particles. Details: Based on quantum gravity, I derived a series of novel results about cosmology, general relativity and particle physics. Here we extend these findings in an essential manner: The space within the present light horizon started from a zero-point oscillation at the Planck scale and at dimension 301. Then it experienced a series of dimensional phase transitions, before it became the usual three dimensional space and expanded towards the present day light horizon. That space is formed by the dark energy and its quanta. These basic cosmological particles are modeled here in detail. The dimensional phase transitions of the early universe provide the quanta that form the masses of all present day elementary particles including the neutrinos, the Higgs boson, quarks, electrons, myons, tauons and W- and Z- bosons. In the same manner, we derive novel elementary particles to be discovered in the future. We derive all results from quantum physics and gravity. Thereby we use only five numerical inputs: the Hubble constant H_0 as a reference for the present time after the Big Bang and the universal constants G, c, k_B and h. Our results include the energies and masses of the above cosmological and elementary particles and the remaining five cosmological constants of the standard model of cosmology. All results are in precise accordance with observation. In this book we derive all findings in a systematic, clear and smooth manner. We summarize our results by many definitions, propositions and theorems. So we solve many fundamental problems of physics including the hierarchy problem of elementary particle physics, in particular. We are classes from grade 10 or higher, courses, research clubs, enthusiasts, observers, experimentalists, mathematicians, natural scientists, researchers … ISSN 2629-1525
Universe: Unified from Microcosm to Macrocosm Series The observable universe ranges from huge galaxies near the light horizon at a distance of 4.1 · 10^26 m, via elementary particles at a hierarchy of scales, towards smallest objects at the Planck scale at lengths of 1.6 · 10^-35 m. How did these very different objects form and develop? We present an answer by deriving a physically founded and critically tested unified theory of cosmological and elementary particles. Details: Based on quantum gravity, I derived a series of novel results about cosmology, general relativity and particle physics. Here we extend these findings in an essential manner: The space within the present light horizon started from a quantum at zero-point energy at the Planck scale and at dimension 301. Then it experienced a series of dimensional phase transitions, before it became three dimensional. An increasing number of these quanta formed our usual space and expanded it towards the present day light horizon. So, space is formed by the dark energy and its quanta. These basic cosmological particles are modeled here in detail. The dimensional phase transitions of the early universe provide the quanta that form the masses of all present day elementary particles including neutrinos, Higgs bosons, quarks, electrons, myons, tauons and W- and Z-bosons. In the same manner, we derive novel elementary particles to be discovered in the future. We derive all results from quantum physics and gravity. Thereby we use only five numerical inputs: the Hubble constant H_0 as a reference for the present time after the Big Bang as well as the universal constants G, c, k_B and h. Our results include the energies and masses of the above cosmological and elementary particles and the remaining five cosmological constants of the standard model of cosmology. All results are in precise accordance with observation. In this book we derive all findings in a systematic, clear and smooth manner. We summarize our results and innovations by many definitions, propositions and theorems. So, we solve many fundamental problems of physics including the hierarchy problem of elementary particle physics, in particular. We are classes from grade 10 or higher, courses, research clubs, enthusiasts, observers, experimentalists, mathematicians, natural scientists, researchers …
Hans-Otto Carmesin
added a research item
Universe: Unified from Microcosm to Macrocosm: Series Volume 4 ISSN: 2629-1525 ISBN: 978-3-96831-008-4 Modern physics is based on two great concepts: general relativity theory, GRT and quantum theory, QT. However, effects faster than light are called nonlocal, and they seem to be impossible in nature and in GRT, while they occur in QT, this contrast is called EPR paradox. We solve it as follows: The curved spacetime in GRT corresponds to additionally forming vacuum. We calculate its volume, and we discover: It explains curvature of space as well as the expansion since the Big Bang. One half of that volume forms in a nonlocal manner: Thus nature and GRT are nonlocal and so no paradox remains. The formation of spacetime, however, is local. With it we combine GRT and QT: We derive the field theory, the quadrupole or spin 2 symmetry, the waves and the quanta of spacetime. These provide precise accordance to observation without any fit parameter, of course. The quanta of spacetime include the propagation and formation of vacuum. So they explain the dark energy and the time evolution of dark energy and structure, which in turn explains the discrepancy inherent to observed values of the Hubble constant H0 and of matter fluctuations sigma8. The quanta of spacetime include the quanta of gravitational interaction. So they explain the graviton by its symmetry, propagation, quantization and mechanism of interaction: Quanta of spacetime form, the resulting heterogeneity generates curvature, and this causes gravitational force. So the graviton is now understood in exceptionally deep detail! The quanta of spacetime in the visible universe are traced back to one single quantum at the Big Bang. At its space, there immediately formed many quanta of zero-point energies of radiation. Altogether the complete energy and mass of the visible universe is traced back to the Big Bang. The quanta of spacetime are invariant at Lorentz transformations and at all other linear transformations. These quanta solve many fundamental problems and explain various interesting systems, including black holes. We derive all results with a smooth progression, and we summarize our findings in 15 propositions and 34 theorems.
Hans-Otto Carmesin
added a research item
Aufgaben zu folgendem Buch: Wir entdecken die Geschichte des Universums mit eigenen Fotos und Experimenten Band 2 in: Universe: Unified from Microcosm to Macrocosm Hans-Otto Carmesin, Berlin: Verlag Dr. Köster 2020 Wir können unser Universum gerade heute eigenständig erkunden: Wir entdecken die wesentlichen Naturgesetze und messen die entsprechenden Naturkonstanten mit eigenen Versuchen, unterstützt durch Smartphones zur Datenerfassung und Auswertung. Wir erstellen Fotos von Himmelskörpern, wobei die Entfernung uns nicht mehr einschränkt, dank hervorragender digitaler Kameras. Wir erklären des Fotografierte selbst mit den Naturgesetzen, das gelingt uns besonders einfach mit eigenen Tabellenkalkulationen. Dieser Blick ins Weltall befähigt uns, große Zusammenhänge auch auf der Erde besser zu verstehen: von der Entstehung bis zur Stabilisierung der Atmosphäre. So können wir die Geschichte des Universums und die Zeitentwicklung der Distanzen nachvollziehen: vom Urknall bis heute, von der Planck-Länge bis zum Lichthorizont. Wir, das sind Klassen oder Kurse ab Klassenstufe 10, Experimentierfreunde, Naturbegeisterte … Uns unterstützen Übungsaufgaben im Internet, zum Trainieren oder zur Selbstkontrolle (hans-otto.carmesin.org oder https://www.researchgate.net/profile/Hans_Otto_Carmesin). Unsere so gewonnene Zeitentwicklung des Universums stimmt präzise mit Beobachtungen überein. Dabei wenden wir nur die Gravitation und die Quantenphysik mithilfe etablierter mathematischer und numerischer Methoden an, mit den zugehörigen universellen Konstanten: Gravitationskonstante, Lichtgeschwindigkeit, Boltzmann-Konstante sowie Plancks Konstante. Das ist eine sachliche und klare Bestätigung unserer Ergebnisse. Dabei können wir auch aktuelle Geheimnisse selbst enträtseln. So ermitteln wir den kompletten Zeitablauf selbst: von der experimentellen Entdeckung wesentlicher Naturgesetze bis zum Distanz-Zeit-Diagramm. The paper has been published in PhyDid B.
Hans-Otto Carmesin
added 4 research items
Kurzfassung In dem folgenden Artikel möchten wir ein Problem der allgemeinen Relativitätstheorie lösen. Die-se Lösung verlässt den Makrokosmos und nutzt den Mikrokosmos, um zu erklären wie sie funkti-oniert. Um diese Lösung genauestens zu erläutern werde wir einige Formeln, Berechnungen, Mo-delle, Tabellenkalkulationen und Diagrammen zeigen und erklären. Zum Schluss zeigen wir die Lösung mit Ergebnissen von realen physikalischen Größen. Abstract In the following article we will solve a problem of the general relativity theory. This solution will leave the macrocosm and use the microcosm to explain how it works. For this we also show and explain formulas, calculations, models, spreadsheets and diagrams. At the end we will show our results in shape of real physical quantities. The paper has been published in PhyDid B
No density can be larger than the Planck density. The time evolution of the actual light horizon should be traced back until the Planck length is reached. However there arises a problem, as in the framework of general relativity theory, GRT, that length is only reached at the density much larger than the Planck density. We investigate the Planck scale, the evolution of space according to the Friedmann Lemaitre equation and the resulting density limit by using EXCEL in a graphic manner. So, we achieve a comprehensive understanding based on our own activity. Additionally, we outline a possible solution of that problem. The paper has been published in PhyDid B
Kurzfassung Die Position einer Masse kann gemessen werden und unterliegt Gesetzmäßigkeiten auf der Basis von grundlegenden Wechselwirkungen zwischen Materie. Bei Objekten mit hohen Dichten ist dabei die Gravitation dominant. In der Quantenmechanik sind Messwerte jedoch nach der Heisenbergschen Unschärferela-tion in Verbindung mit entsprechend komplementären Eigenschaften, wie Ort und Impuls es sind, nicht exakt zu ermitteln. Somit können Objekte, anders als in der klassischen Me-chanik üblich und oft auch ausreichend, für eine exakte Betrachtung nicht als Massenpunkt angesehen werden. Sie haben vielmehr eine Massenverteilung. In diesem Projekt wird nun das Gravitationspotenzial eines Teilchens in einem 3-dimensionalen Raum unter Beachtung solch einer Massenverteilung numerisch berechnet. Dazu wird eine selbst entwickelte Computersimulation verwendet. Des Weiteren werden Eigenschaften dieses Potenzials wie auch der Wellenfunktion des Teilchens untersucht. Abstract The position of masses can be measured and is based on laws describing fundamental interactions among matter. For objects at a very high density, the gravitational force is the most important for describing their interactions. As a result from the Heisenberg uncertainty principle, measurements of complementary properties cannot be exact, examples are possition and momentum. Accordingly, such objects have to be investigated in terms of a mass distribution. This is an essential difference to classical mechanics, viewing objects as masses concentrated at a single point. Such a model is not exact, but sufficient in many fields of physics, except quantum physics. This projecct numerically simulates the gravitational potential of a particle in a 3-dimensional space. Thereby, a mass distribution instead of a concentrated mass is modeled. For this purpose, a computer simulation has been developed. As a result, properties of the gravitational potential and of the wave function of a particle have been examined. The paper has been published in PhyDid B
Hans-Otto Carmesin
added 8 research items
Lernende der Jugend forscht-AG der Klassenstufen 9-12 haben 2017 die Ära der kosmischen Inflation im Rahmen der Quantenphysik und Gravitation modelliert. Dabei sind sie vom kosmologischen Prinzip ausgegangen, also von der Homogenität und Isotropie des Raums. Erst untersuchten sie die Bewegung von Sternen um das Zentrum der Milchstraße. Diese Bewegung sollte durch die Gravitation der Materie der Milchstraße erklärbar sein. Allerdings ist diese Materie anscheinend um den Faktor fünf zu klein. Somit sollte es unsichtbare Materie geben, dunkle Materie. Sie macht etwa 80 % der gesamten Materie aus. Aber was ist das für eine Materie? Die Lernenden gingen von der Modellierung der kosmischen Inflation durch homogene Zustände aus. Das wird verallgemeinert: Wir modellierten in innovativer Weise heterogene Lösungen. Zweitens untersuchten wir innovativ mithilfe einer Extremwertanalyse die stabilsten heterogenen Lösungen. Sie erhielten extrem kompakte Kugeln in acht Raumdimensionen: Neuartige Elementarteilchen mit spezifischer Masse und Radius, die nur mit Gravitation wechselwirken-also dunkle Elementarteilchen. Aber wie überprüft man den Zusammenhang zu dunklen Materie. Drittens untersuchten wir mit Übergangsraten die Gesamtmasse der pro Referenzmasse so entstehenden Elementarteilchen: Diese stimmt auf 0,58 % mit der entsprechenden beobachteten Masse überein. Dabei werden alle Ergebnisse alleine mithilfe der drei grundlegenden Naturkonstanten Gravitationskonstante G, Lichtgeschwindigkeit c und Planck'sches Wirkungsquantum h berechnet. Dabei erweitern die Lernenden auch die prozessbezogenen Kompetenzen Modellbildung, Erkenntnisgewinnung und Problemlösen. Ich berichte über Grundlagen (H.-O. Carmesin (2018) Entstehung dunkler Materie mit Gravitation-Model for the Dynamics of Space and the Emergence of Dark Matter. Berlin, Verlag Dr. Köster.), Lernvoraussetzungen, Binnendifferenzierung und Erfahrungen aus dem Unterricht.
An equivalence principle is elaborated and founded. With it a third development of H.-O. Carmesins theory of quantum gravity is presented. The theory combines quantum physics with general relativity and is based on three numerical inputs only: the constants G, c and h (Carmesin, H.-O. (2017): Vom Big Bang bis heute mit Gravitation, Model for the Dynamics of Space. Berlin: Verlag Dr. Köster. Carmesin, H.-O. (2018): A Model for the Dynamics of Space - Expedition to the Early Universe. PhyDid B, p. 1-9. Carmesin, H.-O. (May 2018): Entstehung dunkler Materie durch Gravitation, Model for the Dynamics of Space and the Emergence of Dark Matter. Berlin: Verlag Dr. Köster. Carmesin, H.-O. (November 2018): Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster.). In particular the most stable local solution of that theory is elaborated. It is an elementary particle forming by the gravitationally self-stabilizing enclosure of radiation. The transition rates are calculated and show that the formed mass is in accurate accordance with the observed total mass of dark matter in the universe, whereby the difference is 0.23 % only. I interpret this coincidence as a strong evidence for the thesis that the obtained solution presents the elementary particle of dark matter.
An equivalence principle is elaborated and founded. With it a third development of H.-O. Carmesins theory of quantum gravity is presented. The theory combines quantum physics with general relativity and is based on three numerical inputs only: the constants G, c and h (Carmesin, H.-O. (2017): Vom Big Bang bis heute mit Gravitation, Model for the Dynamics of Space. Berlin: Verlag Dr. Köster. Carmesin, H.-O. (May 2018): Entstehung dunkler Materie durch Gravitation, Model for the Dynamics of Space and the Emergence of Dark Matter. Berlin: Verlag Dr. Köster. Carmesin, H.-O. (November 2018): Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster.). With that theory cosmic inflation is explained. Hereby energy is conserved, no reheating occurs, the flatness problem and horizon problem are solved and the deviation from observations is only 3 %. Additionally with that theory dark matter is explained by a novel elementary particle, hereby the deviation from observations is only 0.23 %. Moreover with that theory dark energy is explained by zero-point oscillations, hereby the deviation from observations is only 0.073 % and differences of measured Hubble constants are explained by a polychromatic vacuum, hereby the deviation from observations is only 1 %.
Hans-Otto Carmesin
added a research item
The evolution of the early universe is a challenging topic for students in research clubs or similar learning groups. Here we study sub curvature length scales. For these small lengths a novel equivalence principle becomes valid. This principle can be successfully applied to the cosmic inflation , dark energy and dark matter. The first two applications are worked out in full detail here so that they can be directly used in a learning group.
Hans-Otto Carmesin
added a research item
Wir entdecken die Geschichte des Universums mit eigenen Fotos und Experimenten Band 2 in: Universe: Unified from Microcosm to Macrocosm Hans-Otto Carmesin, Berlin: Verlag Dr. Köster 2020 Wir können unser Universum gerade heute eigenständig erkunden: Wir entdecken die wesentlichen Naturgesetze und messen die entsprechenden Naturkonstanten mit eigenen Versuchen, unterstützt durch Smartphones zur Datenerfassung und Auswertung. Wir erstellen Fotos von Himmelskörpern, wobei die Entfernung uns nicht mehr einschränkt, dank hervorragender digitaler Kameras. Wir erklären des Fotografierte selbst mit den Naturgesetzen, das gelingt uns besonders einfach mit eigenen Tabellenkalkulationen. Dieser Blick ins Weltall befähigt uns, große Zusammenhänge auch auf der Erde besser zu verstehen: von der Entstehung bis zur Stabilisierung der Atmosphäre. So können wir die Geschichte des Universums und die Zeitentwicklung der Distanzen nachvollziehen: vom Urknall bis heute, von der Planck-Länge bis zum Lichthorizont. Wir, das sind Klassen oder Kurse ab Klassenstufe 10, Experimentierfreunde, Naturbegeisterte … Uns unterstützen Übungsaufgaben im Internet, zum Trainieren oder zur Selbstkontrolle (hans-otto.carmesin.org oder https://www.researchgate.net/profile/Hans_Otto_Carmesin). Unsere so gewonnene Zeitentwicklung des Universums stimmt präzise mit Beobachtungen überein. Dabei wenden wir nur die Gravitation und die Quantenphysik mithilfe etablierter mathematischer und numerischer Methoden an, mit den zugehörigen universellen Konstanten: Gravitationskonstante, Lichtgeschwindigkeit, Boltzmann-Konstante sowie Plancks Konstante. Das ist eine sachliche und klare Bestätigung unserer Ergebnisse. Dabei können wir auch aktuelle Geheimnisse selbst enträtseln. So ermitteln wir den kompletten Zeitablauf selbst: von der experimentellen Entdeckung wesentlicher Naturgesetze bis zum Distanz-Zeit-Diagramm.
Hans-Otto Carmesin
added a research item
The evolution of the early universe is a challenging topic for students in research clubs or similar learning groups. Here we study sub curvature length scales. For these small lengths a novel equivalence principle becomes valid. This principle can be successfully applied to the cosmic inflation , dark energy and dark matter. The first two applications are worked out in full detail here so that they can be directly used in a learning group. The paper has been published in PhyDid B.
Hans-Otto Carmesin
added a research item
Letter to Editor concerning the actual controversy about the Hubble Constant
Hans-Otto Carmesin
added a research item
General relativity theory describes the macrocosm, quantum physics the microcosm. Both fields coact in a natural manner in the universe: Limitations of observation by Heisenberg‘s uncertainty relation and by the Schwarzschild radius cause smallest observable regions. These interact by gravity, perform harmonic oscillations thereby and form the local structure of space. This explains cosmic inflation and solves the flatness problem, the horizon problem, the reheating problem as well as the problem of the big bang singularity. The formation of dark matter is explained additionally. In the early universe, long-wave fundamental oscillations became effective within the global horizon. These oscillations form the global structure of space as well as the dark energy or vacuum density. This solves the fine - tuning problem. For it the three density parameters, of the vacuum, of radiation and of the dark matter, are calculated directly from the universal constants G, c and h. Moreover the polychromatic nature of the vacuum is realized, the spectrum of the dark energy is calculated and the problem of the significantly different results of the measurement of the Hubble – constant is solved. Thereby the origin of the energy is derived from the universal constants G, c und h. The theory survives two tests: it fulfills the classical limits and it is in precise accordance with observations. The latter are obtained from the cosmic microwave background and from the observation of distant galaxies. Links to other fields of knowledge enable an effective understanding. Answers to 42 frequently asked questions provide relations to basic concepts. Exercises with solutions facilitate a deepened understanding and promote the self-reliance.
Hans-Otto Carmesin
added 3 research items
In order to measure the predicted elementary particles of dark matter indirectly, the influence of these particles on the formation and evolution of galaxies may be detected with help of astronomical observations (see Carmesin, Hans – Otto (May 2018): Entstehung dunkler Materie durch Gravitation – Model for the Dynamics of Space and the Emergence of Dark Matter. Berlin: Verlag Dr. Köster. Carmesin, Hans – Otto (July 2018): Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy). In order to measure the predicted elementary particles of dark matter, the crystal of dark matter may be detected with help of gravitational waves (see Carmesin, Hans – Otto (July 2018): Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy). In order to measure the dark energy, its predicted spectrum may be detected with help of gravitational waves (see Carmesin, Hans – Otto (July 2018): Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy. Carmesin, Hans – Otto (November 2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster). In order to measure the predicted polychromatic spectrum of the vacuum more precisely, the Hubble constants at various times may be detected more accurately (see Carmesin, Hans – Otto (July 2018): Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy. Carmesin, Hans – Otto (November 2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster).
In order to measure the predicted elementary particles of dark matter indirectly, the influence of these particles on the formation and evolution of galaxies may be detected with help of astronomical observations (see Carmesin, Hans – Otto (May 2018): Entstehung dunkler Materie durch Gravitation – Model for the Dynamics of Space and the Emergence of Dark Matter. Berlin: Verlag Dr. Köster. Carmesin, Hans – Otto (July 2018): Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy). In order to measure the predicted elementary particles of dark matter, the crystal of dark matter may be detected with help of gravitational waves (see Carmesin, Hans – Otto (July 2018): Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy). In order to measure the dark energy, its predicted spectrum may be detected with help of gravitational waves (see Carmesin, Hans – Otto (July 2018): Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy. Carmesin, Hans – Otto (November 2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster). In order to measure the predicted polychromatic spectrum of the vacuum more precisely, the Hubble constants at various times may be detected more accurately (see Carmesin, Hans – Otto (July 2018): Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy. Carmesin, Hans – Otto (November 2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster).
In order to measure the predicted elementary particles of dark matter indirectly, the influence of these particles on the formation and evolution of galaxies may be detected with help of astronomical observations (see Carmesin, Hans – Otto (May 2018): Entstehung dunkler Materie durch Gravitation – Model for the Dynamics of Space and the Emergence of Dark Matter. Berlin: Verlag Dr. Köster. Carmesin, Hans – Otto (July 2018): Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy). In order to measure the predicted elementary particles of dark matter, the crystal of dark matter may be detected with help of gravitational waves (see Carmesin, Hans – Otto (July 2018): Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy). In order to measure the dark energy, its predicted spectrum may be detected with help of gravitational waves (see Carmesin, Hans – Otto (July 2018): Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy. Carmesin, Hans – Otto (November 2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster). In order to measure the predicted polychromatic spectrum of the vacuum more precisely, the Hubble constants at various times may be detected more accurately (see Carmesin, Hans – Otto (July 2018): Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy. Carmesin, Hans – Otto (November 2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster).
Hans-Otto Carmesin
added a project goal
The goal of the project is to combine quantum physics, gravity and general relativity. Additionally, that combination is tested by comparisons with observations, thereby only three numerical inputs are used: the three fundamental constants of nature, the gravitational constant G, the velocity c of light and the Planck constant h. Moreover, various problems of physics are solved, and measurable predictions are obtained (see Carmesin, Hans – Otto (2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster).
Firstly, the era of cosmic inflation has been explained, the problems of the horizon and of the flatness are solved and the problem of Reheating is avoided (see Carmesin, Hans – Otto (2017) Vom Big Bang bis heute – Model for the Dynamics of Space. Berlin: Verlag Dr. Köster. Carmesin, Hans – Otto (May 2018) Entstehung dunkler Materie durch Gravitation – Model for the Dynamics of Space and the Emergence of Dark Matter. Berlin: Verlag Dr. Köster. Carmesin, Hans – Otto (November 2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster).
Secondly, the formation of dark matter has been modeled (see Carmesin, Hans – Otto (May 2018) Entstehung dunkler Materie durch Gravitation – Model for the Dynamics of Space and the Emergence of Dark Matter. Berlin: Verlag Dr. Köster. Carmesin, Hans – Otto (November 2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster).
Thirdly, the formation of dark energy has been modeled. Thereby, the problem of different measured Hubble constants is solved (see Carmesin, Hans – Otto (July 2018) Entstehung dunkler Energie durch Quantengravitation – Universal Model for the Dynamics of Space, Dark matter and Dark Energy. Berlin: Verlag Dr. Köster. Carmesin, Hans – Otto (November 2018) Entstehung der Raumzeit durch Quantengravitation, Theory for the Emergence of Space, Dark Matter, Dark Energy and Space-Time. Berlin: Verlag Dr. Köster).
 
Hans-Otto Carmesin
added 2 research items
The expansion of our universe is fascinating. Additionally there are exciting mysteries about the early universe: How is causality achieved? Why is quantum gravity essential? How can the problems of reheating and big bang singularity be solved? Here I present a teaching unit that I developed and tested in a research club at school. The 'process related competences' of 'modeling' and 'problem solving' are applied: Observations are modeled systematically. Problems are utilized to improve the models progressively. Additionally models developed by the teacher are available for critical tests and cooperative research projects.
From the Cosmic Microwave Background CMB, the flatness problem and the horizon problem arose. An extraordinarily increase of distances in the early universe, the Cosmic Inflation, was proposed as a possible solution, whereby suggested mechanisms for such an increase have been criticized (Steinhard, 2011). We apply a theory that explains the Cosmic Inflation by an extended Friedmann-Lemaitre model combined with an energy term (Carmesin, 2017). We investigate various questions by performing computer simulations. We observe a sequence of phase transitions that cause an extraordinarily fast increase in distances. Our findings are in excellent quantitative agreement with observations of the CMB. Thereby the theory depends only on first principles and the fundamental constants G, c and h and we apply no fit in particular. We present the development of the project in the framework of a Jugend forscht club.
Hans-Otto Carmesin
added a research item
Die Quantengravitation verbindet Mikro-und Makrokosmos. Hierfür wird ein neues Äquivalenzprinzip entwickelt und daraus die Quantengravitationstheorie von Hans-Otto Carmesin hergeleitet. Dabei werden die Gesetze der Gravitation und der Quantendynamik auf natürliche Weise auf verschiedene Dimensionen verallgemeinert. Seit dem Urknall wird das Vakuum durch Nullpunktschwingungen realisiert. Sie stellen die dunkle Energie dar. Die für uns kausal wirksamen Nullpunktschwingungen sind durch den Lichthorizont begrenzt. Während der ersten 22 Planck-Zeiten erzeugte eine Folge dimensionaler Übergänge eine enorme Vergrößerung von Entfernungen durch Reorganisation der Nachbarschaften. Ab 22 Planck-Zeiten nach dem Urknall ist der dreidimensionale Raum stabil. Bei 1892 Planck-Zeiten öffnete sich ein Zeitfenster, in dem die dunkle Materie entstand. Diese besteht aus neuartigen und naturgesetzlich elementaren Elementarteilchen. Ab 1892 Planck-Zeiten koppelt die Zeit an den Raum und die Raumzeit existiert als physikalische Struktur. Diese Quantengravitationstheorie geht in den klassischen Grenzfällen in die klassischen Theorien über und löst zahlreiche wesentliche Probleme der Physik wie das Energieproblem, das Flachheitsproblem und das Horizontproblem. Diese Quantentheorie ist völlig relativistisch, völlig mikroskopisch sowie völlig makroskopisch und erfüllt stets das Prinzip der Energieerhaltung. Die Theorie verwendet als numerische Eingabe nur die drei Naturkonstanten G, c sowie h und stimmt exzellent mit Beobachtungen überein. Quantum gravity connects the micro-and the macrocosm. For it a novel equivalence principle is developed and therefrom Hans-Otto Carmesin's theory of quantum gravity is derived. Thereby the laws of physics and quantum dynamics are naturally generalized to various dimensions. Zero-point oscillations realize the vacuum and represent the dark energy since the big bang. The causally effective zero-point oscillations are limited by the light horizon. During the first 22 Planck times the distances increased enormously via a sequence of dimensional transitions by reorganizations of neighbor relations. The three dimensional space became stable 22 Planck times after the big bang. At 1892 Planck times a time window opened in which the dark matter formed. That matter consists of novel fundamentally elementary particles. Since 1892 Planck times the time coupled to the space and the space-time emerged as a physical structure. This theory of quantum gravity converges to the classical theory in the classical limits. Furthermore this theory of quantum gravity is fully relativistic, fully microscopic, fully macroscopic and fully in accordance with the law of energy conservation. Moreover this theory solves various essential problems of physics such as the energy problem, the flatness problem and the horizon problem. Additionally this theory achieves excellent accordance with observations from three numerical inputs only: the three universal constants of nature G, c and h.
Hans-Otto Carmesin
added 2 research items
Model for the Dynamics of Space and the Emergence of Dark Matter The book presents a comprehensible model of the emergence of space and dark matter in the early universe. Space is modeled from the Big Bang until today. Thereby the singularity-, flatness- and horizon-problem are solved. It is revealed qualitatively and quantitatively, how our space, our matter and its density emerged. The model is solely based on the theories of gravity and quantum physics. It is in excellent accordance with observations. All results are explained graphically and clearly without any formula in part 1, while all derivations are shown in part 2. --- doi - d-nb.info/1156860903 --- ISBN: 978 - 3 - 89574 - 939 - 1 --- Entstehung dunkler Materie durch Gravitation Das Buch stellt ein gut nachvollziehbares Modell zur Entwicklung von Raum und dunkler Materie im frühen Universum vor. Der Raum wird ausgehend vom Big Bang bis heute modelliert. Dabei werden das Singularitäts-, das Flachheits- und das Horizontproblem gelöst. Es wird qualitativ und quantitativ klar, wie unsere Raumstruktur, Materie und Materiedichten entstanden sind. Das Modell beruht einzig auf den fundamentalen Grundlagen Gravitation und Quantenphysik. Es erzielt exzellente Übereinstimmungen mit Beobachtungen. In Teil 1 werden alle Ergebnisse anschaulich und ohne Formeln erklärt, während in Teil 2 die vollständigen Herleitungen präsentiert werden. ISBN: 978 - 3 - 89574 - 939 - 1
Vom Big Bang bis heute mit Gravitation Das Buch stellt ein gut nachvollziehbares Modell zur kosmischen Inflation vor. Der Radius des aktuell sichtbaren Teils des Universums wird ausgehend vom Big Bang bis heute modelliert. Das Modell beruht einzig auf den fundamentalen Grundlagen Gravitation und Quantenphysik und nutzt Ideen der Schleifenquantengravitation. Es erzielt exzellente Übereinstimmungen mit Beobachtungen des Mikrowellenhintergrunds. --- doi: d-nb.info/114192529X --- ISBN: 978 - 3 - 89574 - 899 - 8 --- Model for the Dynamics of Space The book presents a comprehensible model of the era of cosmic inflation. The radius of the currently visible part of the universe is modeled from the Big Bang until today. The model is solely based on the theories of gravitation and quantum physics and applies ideas of Loop Quantum Gravity. It is in excellent accordance with observations of the cosmic microwave background.
Hans-Otto Carmesin
added a research item
The early universe was analyzed by a quantum gravity model by Hans-Otto Carmesin. So the problems related to the era of cosmic inflation and to dark matter have been solved. Here this model is applied to the late universe and the mystery of dark energy is revealed. This energy is explained by cosmic zero point oscillations of the quantum field. The results of this theory are in excellent accordance with observations, correspond to the law of conservation of energy and are solely based on the theories of gravity and quantum physics.