Project

New tools for diagnostics and surveillance of arboviral diseases

Goal: Development, validation and implementation of laboratory techniques for a better detection, diagnostics and monitoring of arboviral diseases in animals

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
18
Reads
1 new
147

Project log

Miguel Ángel Jiménez-Clavero
added 4 research items
Flaviviruses have become increasingly important pathogens in Europe over the past few decades. A better understanding of the spatiotemporal distribution of flaviviruses in France is needed to better define risk areas and to gain knowledge of the dynamics of virus transmission cycles. Serum samples from 1014 wild boar and 758 roe deer from 16 departments (administrative units) in France collected from 2009 to 2014 were screened for flavivirus antibodies using a competitive ELISA (cELISA) technique. Serum samples found to be positive or doubtful by cELISA were then tested for antibodies directed against West Nile virus (WNV), Usutu virus (USUV), Bagaza virus (BAGV), and tick-borne encephalitis/Louping ill viruses (TBEV/LIV) by microsphere immunoassays (except BAGV) and micro-neutralization tests. USUV antibodies were detected only in southeastern and southwestern areas. TBEV/LIV antibodies were detected in serum samples from eastern, southwestern and northern departments. The results indicate continuous circulation of USUV in southern France from 2009 to 2014, which was unnoticed by the French monitoring system for bird mortality. The findings also confirm wider distribution of TBEV in the eastern part of the country than of human clinical cases. However, further studies are needed to determine the tick-borne flavivirus responsible for the seroconversion in southwestern and northern France.
High impact, mosquito-borne flaviviruses such as West Nile virus (WNV), Usutu virus (USUV), Japanese encephalitis virus (JEV), Tembusu virus (TMUV), and Bagaza/Israel turkey meningoencephalomyelitis virus (BAGV/ITV) are emerging in different areas of the world. These viruses belong to the Japanese encephalitis (JE) serocomplex (JEV, WNV, and USUV) and the Ntaya serocomplex (TMUV and BAGV/ITV). Notably, they share transmission route (mosquito bite) and reservoir host type (wild birds), and some of them co-circulate in the same areas, infecting overlapping mosquito and avian population. This may simplify epidemiological surveillance, since it allows the detection of different infections targeting the same population, but also represents a challenge, as the diagnostic tools applied need to detect the whole range of flaviviruses surveyed, and correctly differentiate between these closely related pathogens. To this aim, a duplex real-time RT-PCR (dRRT-PCR) method has been developed for the simultaneous and differential detection of JE and Ntaya flavivirus serocomplexes. The method has been standardized and evaluated by analyzing a panel of 49 flaviviral and non-flaviviral isolates, and clinical samples of different bird species obtained from experimental infections or from the field, proving its value for virus detection in apparently healthy or suspicious animals. This new dRRT-PCR technique is a reliable, specific and highly sensitive tool for rapid detection and differentiation of JE and Ntaya flavivirus groups in either domestic or wild animals. This novel method can be implemented in animal virology diagnostic laboratories as screening tool in routine surveillance and in the event of bird encephalitis emergence.
Vector‐borne diseases, especially those transmitted by mosquitoes, have severe impacts on public health and economy. West Nile virus (WNV) and avian malaria parasites of the genus Plasmodium, are mosquito‐borne pathogens that may produce severe disease and illness in humans and birds, respectively, and circulate in an endemic form in southern Europe. Here, we used field‐collected data to identify the impact of Culex pipiens, Cx. perexiguus and Cx. modestus, on the circulation of both WNV and Plasmodium in Andalusia (SW Spain) using mathematical modelling of the basic reproduction number (R0). Models were calibrated with field‐collected data on WNV seroprevalence and Plasmodium infection in wild house sparrows, presence of WNV and Plasmodium in mosquito pools, and mosquito blood feeding patterns. This approach allowed us to determine the contribution of each vector species to pathogen amplification. Overall, 0.7% and 29.6% of house sparrows were positive to WNV antibodies and Plasmodium infection, respectively. In addition, the prevalence of Plasmodium was higher in Cx. pipiens (2.0%), followed by Cx. perexiguus (1.8%) and Cx. modestus (0.7%). Three pools of Cx. perexiguus were positive to WVN. Models identified Cx. perexiguus as the most important species contributing to the amplification of WNV in southern Spain. For Plasmodium models, R0 values were higher when Cx. pipiens was present in the population, either alone or in combination with the other mosquito species. These results suggest that the transmission of these vector borne pathogens depends on different Culex species and consequently their transmission niches will present different spatial and temporal patterns. For WNV, targeted surveillance and control of Cx. perexiguus populations appears as the most effective measure to reduce WNV amplification. Also, preventing Culex populations near human settlements, or reducing the abundance of these species, are potential strategies to reduce WNV spillover into human populations in southern Spain.
Miguel Ángel Jiménez-Clavero
added 2 research items
Rift Valley fever (RVF) is an arboviral zoonosis that primarily affects ruminants but can also cause illness in humans. The increasing impact of RVF in Africa and Middle East and the risk of expansion to other areas such as Europe, where competent mosquitos are already established, require the implementation of efficient surveillance programs in animal populations. For that, it is pivotal to regularly assess the performance of existing diagnostic tests and to evaluate the capacity of veterinary labs of endemic and non-endemic countries to detect the infection in an accurate and timely manner. In this context, the animal virology network of the MediLabSecure project organized between October 2016 and March 2017 an external quality assessment (EQA) to evaluate the RVF diagnostic capacities of beneficiary veterinary labs. This EQA was conceived as the last step of a training curriculum that included 2 diagnostic workshops that were organized by INIA-CISA (Spain) in 2015 and 2016. Seventeen veterinary diagnostic labs from 17 countries in the Mediterranean and Black Sea regions participated in this EQA. The exercise consisted of two panels of samples for molecular and serological detection of the virus. The laboratories were also provided with positive controls and all the kits and reagents necessary to perform the recommended diagnostic techniques. All the labs were able to apply the different protocols and to provide the results on time. The performance was good in the molecular panel with 70.6% of participants reporting 100% correct results, and excellent in the serological panel with 100% correct results reported by 94.1% of the labs. This EQA provided a good overview of the RVFV diagnostic capacities of the involved labs and demonstrated that most of them were able to correctly identify the virus genome and antibodies in different animal samples.
The increasing incidence of West Nile virus (WNV) in the Euro-Mediterranean area warrants the implementation of effective surveillance programs in animals. A crucial step in the fight against the disease is the evaluation of the capacity of the veterinary labs to accurately detect the infection in animal populations. In this context, the animal virology network of the MediLabSecure project organized an external quality assessment (EQA) to evaluate the WNV molecular and serological diagnostic capacities of beneficiary veterinary labs. Laboratories from 17 Mediterranean and Black Sea countries participated. The results of the triplex real time RT-PCR for simultaneous detection and differentiation of WNV lineage 1 (L1), lineage 2 (L2) and Usutu virus (USUV) were highly satisfactory, especially for L1 and L2, with detection rates of 97.9% and 100%, respectively. For USUV, 75% of the labs reported correct results. More limitations were observed for the generic detection of flaviviruses using conventional reverse-transcription polymerase chain reaction (RT-PCR), since only 46.1% reported correct results in the whole panel. As regards the serological panel, the results were excellent for the generic detection of WNV antibodies. More variability was observed for the specific detection of IgM antibodies with a higher percentage of incorrect results mainly in samples with low Pathogens 2020, 9, 1038 2 of 20 titers. This EQA provides a good overview of the WNV (and USUV) diagnostic performance of the involved veterinary labs and demonstrates that the implemented training program was successful in upgrading their diagnostic capacities.
Miguel Ángel Jiménez-Clavero
added a research item
Numerous infectious diseases impacting livestock impose an important economic burden, and in some cases also represent a threat to humans and are classified as zoonoses. Some zoonotic diseases are transmitted by vectors and, due to complex environmental and socio‐ecconomic factors, the distribution of many of these pathogens is changing, with increasing numbers being found in previously unaffected countries. Here, we developed a multiplex assay, based on a suspension microarray, able to detect specific antibodies to five important pathogens of livestock (three of them zoonotic) that are currently emerging in new geographical locations: Rift Valley fever virus (RVFV), Crimean‐Congo haemorrhagic fever virus (CCHFV), Schmallenberg virus (SBV), Bluetongue virus (BTV) and the bacteria complex Mycobacterium tuberculosis.Using the Luminex platform, polystyrene microspheres were coated with recombinant proteins from each of the five pathogens. The mix of microspheres was used for the simultaneous detection of antibodies against the five corresponding diseases affecting ruminants. The following panel of sera was included in the study: 50 sera from sheep experimentally infected with RVFV, 74 sera from calves and lambs vaccinated with SBV , 26 sera from cattle vaccinated with Mycobacterium bovis, 30 field sera from different ruminants’ species infected with CCHFV and 73 calf sera infected with BTV. Finally, to determine its diagnostic specificity 220 field sera from Spanish farms free of the five diseases were assessed. All the sera were classified using commercial ELISAs specific for each disease, used in this study as the reference technique. The results showed the multiplex assay exhibited good performance characteristics with values of sensitivity ranging from 93‐100% and of specificity ranging from 96‐99% depending on the pathogen. This new tool allows the simultaneous detection of antibodies against five important pathogens, reducing the volume of sample needed and the time of analysis where these patogens are usually tested individually.
Miguel Ángel Jiménez-Clavero
added 16 research items
West Nile virus (WNV) is continuously spreading across Europe, and other continents, i.e. North and South America and many other regions of the world. Despite the overall sporadic nature of outbreaks with cases of West Nile neuroinvasive disease (WNND) in Europe, the spillover events have increased and the virus has been introduced into new areas. The high genetic diversity of the virus, with remarkable phenotypic variation, and its endemic circulation in several countries, require an intensification of the integrated and multidisciplinary research efforts built under the 7th Framework Programme of the European Union (FP7). It is important to better clarify several aspects of WNV circulation in Europe, including its ecology, genomic diversity, pathogenicity, transmissibility, diagnosis and control options, under different environmental and socio-economic scenarios. Identifying WNV endemic as well as infection-free areas is becoming a need for the development of human vaccines and therapeutics and the application of blood and organs safety regulations. This review, produced as a joint initiative among European experts and based on analysis of 118 scientific papers published between 2004 and 2014, provides the state of knowledge on WNV and highlights the existing knowledge and research gaps that need to be addressed with high priority in Europe and neighbouring countries. © 2015, European Centre for Disease Prevention and Control (ECDC). All rights reserved.
In September 2010, an outbreak of disease in 2 wild bird species (red-legged partridge, Alectoris rufa; ring-necked pheasant, Phasianus colchicus) occurred in southern Spain. Bagaza virus (BAGV) was identified as the etiological agent of the outbreak. BAGV had only been reported before in Western Africa (Central African Republic, Senegal) and in India. The first occurrence of BAGV in Spain stimulated a demand for rapid, reliable, and efficacious diagnostic methods to facilitate the surveillance of this disease in the field. This report describes a real-time reverse transcription polymerase chain reaction (RT-PCR) method based on a commercial 5'-Taq nuclease-3' minor groove binder DNA probe and primers targeting the Bagaza NS5 gene. The method allowed the detection of BAGV with a high sensitivity, whereas other closely related flaviviruses (Usutu virus, West Nile virus, and Japanese encephalitis virus) were not detected. The assay was evaluated using field samples of red-legged partridges dead during the outbreak (n = 11), as well as samples collected from partridges during surveillance programs (n = 81). The results were compared to those obtained with a pan-flaviviral hemi-nested RT-PCR followed by nucleotide sequencing, which was employed originally to identify the virus involved in the outbreak. The results obtained with both techniques were 100% matching, indicating that the newly developed real-time RT-PCR is a valid technique for BAGV genome detection, useful in both diagnosis and surveillance studies.
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis which affects humans and a wide range of domestic and wild ruminants. The large spread of RVF in Africa and its potential to emerge beyond its geographic range requires the development of surveillance strategies to promptly detect the disease outbreaks in order to implement efficient control measures, which could prevent the widespread of the virus to humans. The Animal Health Mediterranean Network (REMESA) linking some Northern African countries as Algeria, Egypt, Libya, Mauritania, Morocco, Tunisia with Southern European ones as France, Italy, Portugal and Spain aims at improving the animal health in the Western Mediterranean Region since 2009. In this context, a first assessment of the diagnostic capacities of the laboratories involved in the RVF surveillance was performed. The first proficiency testing (external quality assessment-EQA) for the detection of the viral genome and antibodies of RVF virus (RVFV) was carried out from October 2013 to February 2014. Ten laboratories participated from 6 different countries (4 from North Africa and 2 from Europe). Six laboratories participated in the ring trial for both viral RNA and antibodies detection methods, while four laboratories participated exclusively in the antibodies detection ring trial. For the EQA targeting the viral RNA detection methods 5 out of 6 laboratories reported 100% of correct results. One laboratory misidentified 2 positive samples as negative and 3 positive samples as doubtful indicating a need for corrective actions. For the EQA targeting IgG and IgM antibodies methods 9 out of the 10 laboratories reported 100% of correct results, whilst one laboratory reported all correct results except one false-positive. These two ring trials provide evidence that most of the participating laboratories are capable to detect RVF antibodies and viral RNA thus recognizing RVF infection in affected ruminants with the diagnostic methods currently available.
Miguel Ángel Jiménez-Clavero
added a project goal
Development, validation and implementation of laboratory techniques for a better detection, diagnostics and monitoring of arboviral diseases in animals