Project

NanoMaterials Enhanced Membranes for Carbon Capture

Goal: “NanoMEMC2”, NanoMaterials Enhanced Membranes for Carbon Capture, WP3, HFTM Membranes characterization, Horizon2020, 2016-2019

Date: 1 October 2016 - 30 September 2019

Updates
0 new
3
Recommendations
0 new
1
Followers
0 new
23
Reads
1 new
307

Project log

Maria Grazia De Angelis
added a research item
Facilitated transport membranes are particularly promising in different separations, as they are potentially able to overcome the trade-off behavior usually encountered in solution-diffusion membranes. The reaction activated transport is a process in which several mechanisms take place simultaneously, and requires a rigorous theoretical analysis, which unfortunately is often neglected in current studies more focused on material development. In this work, we selected and reviewed the main mathematical models introduced to describe mobile and fixed facilitated transport systems in steady state conditions, in order to provide the reader with an overview of the existing mathematical tools. An analytical solution to the mass transport problem cannot be achieved, even when considering simple reaction schemes such as that between oxygen (solute) and hemoglobin (carrier) (A+C⇄AC), that was thoroughly studied by the first works dealing with this type of biological facilitated transport. Therefore, modeling studies provided approximate analytical solutions and comparison against experimental observations and exact numerical calculations. The derivation, the main assumptions, and approximations of such modeling approaches is briefly presented to assess their applicability, precision, and flexibility in describing and understanding mobile and fixed site carriers facilitated transport membranes. The goal is to establish which mathematical tools are more suitable to support and guide the development and design of new facilitated transport systems and materials. Among the models presented, in particular, those from Teramoto and from Morales-Cabrera et al. seem the more flexible and general ones for the mobile carrier case, while the formalization made by Noble and coauthors appears the most complete in the case of fixed site carrier membranes.
Liyuan Deng
added a research item
To mitigate the effect of atmospheric CO2 on global climate change, gas separation materials that simultaneously exhibit high CO2 permeability and selectivity in gas mixtures must be developed. In this study, CO2 transport through midblock-sulfonated block polymer membranes prepared from four different solvents is investigated. The results presented here establish that membrane morphology and accompanying gas transport properties are sensitive to casting solvent and relative humidity. We likewise report an intriguing observation: submersion of these thermoplastic elastomeric membranes in liquid water, followed by drying prior to analysis, promotes not only a substantial change in membrane morphology, but also a significant improvement in both CO2 permeability and CO2/N2 selectivity. Measured CO2 permeability and CO2/N2 selectivity values of 482 Barrer and 57, respectively, surpass the Robeson upper bound, indicating that these nanostructured membranes constitute promising candidates for gas separation technologies aimed at CO2 capture.
Liyuan Deng
added a research item
In the present work, hybrid block ionomer/ionic liquid (IL) membranes containing up to 40 wt% IL are prepared by incorporating 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) into a midblock-sulfonated pentablock polymer (Nexar) that behaves as a thermoplastic elastomer. Various analytical techniques, including thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy, small-angle X-ray scattering (SAXS), and water sorption have been employed to characterize the resultant membrane materials. Single- and mixed-gas permeation tests have been performed at different relative humidity conditions to evaluate membrane gas-separation performance and interrogate the molecular transport of CO2 through these membranes. Addition of IL to Nexar systematically enhances CO2 permeability through membranes in the dry state. Introduction of water vapor into the gas feed further promotes CO2 transport, yielding a maximum permeability of 194 Barrers and a maximum CO2/N2 selectivity of 128 under different test conditions. These results confirm that humidified Nexar/IL hybrid membranes constitute promising candidates for the selective removal, and subsequent capture, of CO2 from mixed gas streams to reduce the environmental contamination largely responsible for global climate change.
Liyuan Deng
added 3 research items
In this work, defect-free thin-film-composite (TFC) hollow fiber membranes containing various amino acid salts as CO 2 facilitated transport carriers were fabricated via dip-coating. Four different amino acid salts, i.e., potassium prolinate (ProK), potassium argininate (ArgK), potassium glycinate (GlyK) and potassium cysteinate (CysK), were selected and embedded within polyvinyl alcohol (PVA) matrix. TGA, FTIR, SEM and humid mixed gas permeation test were used for the evaluation. Experiments show that adding amino acid salts into the PVA matrix significantly increases the CO 2 permeance with little influence on the CO 2 /N 2 selectivity. ProK was found the most effective within the four investigated mobile carriers; The addition of 40% ProK into the PVA matrix nearly doubled the CO 2 permeance (from 399 to 791 GPU). The PVA/amino acid salt membranes also exhibited good long-term stability, in which both CO 2 permeance and CO 2 /N 2 selectivity remained nearly unchanged in a 20-h test and after a two-week shutdown period.
Due to the high specific surface area, high mechanical strength and broad possibility of surface modification, nanocellulose has obtained much attention as a new class of bio-based nanomaterials with promising potential in a wide variety of applications. Recently, a considerable amount of research has been aimed to the fabrication of nanocellulose based hybrid membranes for water treatment. However, nanocellulose based hybrid gas separation membrane is still a new research area. Herein, we force on recent advancements in the fabrication methods and separation performances of nanocellulose-based hybrid membranes for CO2 separation, the transport mechanisms involved, along with the challenges in the utilization of nanocellulose in membranes. Finally, some perspectives on future R&D of nanocellulose-based membranes for CO2 separation are proposed.
In this work, a pre-pilot scale hollow fiber membrane module with a PVA/ProK hybrid membrane containing up to 40 wt% amino acid salt was fabricated and tested infield for CO2 capture. The petroleum coke-fired flue gas generated from the rotary kiln provided with a 5-stage cyclone pre-heater tower for the production of grey clinker in the Colacem cement plant in Gubbio (PG), Italy, was used as feed gas after a simple filtration to remove the suspended particulate matter without further pretreatment. The temperature for the membrane test was ranging from 80 to 115 °C. The effects of various parameters including operation temperature, pressure, sweep gas flow rate, vacuum grade, and the impurities in the feed were systematically investigated. Under optimized condition, CO2 content of 50% in the permeate and CO2 permeate flux of ˜5 × 10−3 cm3(STP) cm−2 s−1 were documented, which is comparable with other facilitated transport membranes. The presence of impurities in the feed stream showed a negligible effect on the CO2 separation performance. Long-term stability was also studied through a test for a duration of 1 week at 90 °C.
Marco Giacinti Baschetti
added an update
On April 11th, PNO and the NANOMEMC2 partners organized the project's industrial workshop “CO2 selective membranes for carbon capture and decarbonised fuels”.
The event is part of the NANOMEMC2 exploitation and dissemination strategy, with the aim to increase visibility, attract interest and start fruitful collaborations with external stakeholders.
The workshop was a success, with a total of >40 attendees from industries, the European Commission, associations and research centres, all representing different interests in membranes for carbon capture in Europe.
See the video of the worshop on https://vimeo.com/336380608
NANOMEMC2 - 'NanoMaterials Enhanced Membranes for Carbon Capture' is a project funded by the European Union under the Horizon2020 Framework Programme (GA n. 727734) that tackles the economic issues currently preventing the deployment of Carbon Capture technologies in the industry and energy sectors.
 
Luca Ansaloni
added an update
Check out our latest results on PVA-based membranes containing amino acids for CO2 capture.
At this link you can enjoy free open access for 50 days:
 
Luca Ansaloni
added a research item
Poly(1-trimethylsilyl-1-propyne) (PTMSP) is a high free volume polymer with exceptionally high gas permeation rate but the serious aging problem and low selectivity have limited its application as CO2 separation membrane material. Incorporating inorganic nanoparticles in polymeric membranes has been a common approach to improve the separation performance of membranes, which has also been used in PTMSP based membrane but mostly with respect to tackling the aging issues. Aiming at increasing the CO2 selectivity, in this work, hybrid membranes containing four types of selected nanofillers (from 0 to 3D) were fabricated using PTMSP as the polymer matrix. The effects of the various types of nanofillers on the CO2 separation performance of the resultant membranes were systematically investigated in humid conditions. The thermal, chemical and morphologic properties of the hybrid membranes were characterized using TGA, FTIR and SEM. The gas permeation properties of the hybrid membranes were evaluated using mixed gas permeation test with the presence of water vapour to simulate the flue gas conditions. Experiments show that the addition of different fillers results in significantly different separation performances; The addition of ZIF-L porous 2D filler improves the CO2/N2 selectivity at the expenses of CO2 permeability, while the addition of TiO2, ZIF-7 and ZIF-8 increases the CO2 permeability but the CO2/N2 selectivity decreases.
Luca Ansaloni
added a research item
Application of conventional polymeric membranes in CO 2 separation processes are limited by the existing trade-off between permeability and selectivity represented by the renowned upper bound. Addition of porous nanofillers in polymeric membranes is a promising approach to transcend the upper bound, owing to their superior separation capabilities. Porous nanofillers entice increased attention over nonporous counterparts due to their inherent CO 2 uptake capacities and secondary transport pathways when added to polymer matrices. Infinite possibilities of tuning the porous architecture of these nanofillers also facilitate simultaneous enhancement of permeability, selectivity and stability features of the membrane conveniently heading in the direction towards industrial realization. This review focuses on presenting a complete synopsis of inherent capacities of several porous nanofillers, like metal organic frameworks (MOFs), Zeolites, and porous organic frameworks (POFs) and the effects on their addition to polymeric membranes. Gas permeation performances of select hybrids with these three-dimensional (3D) fillers and porous nanosheets have been summarized and discussed with respect to each type. Consequently, the benefits and shortcomings of each class of materials have been outlined and future research directions concerning the hybrids with 3D fillers have been suggested.
Luca Ansaloni
added a research item
Membrane technology has the potential to be an eco-friendly and energy-saving solution for the separation of CO 2 from different gaseous streams due to the lower cost and the superior manufacturing features. However, the performances of membranes made of conventional polymers are limited by the trade-off between the permeability and selectivity. Improving the membrane performance through the addition of nanofillers within the polymer matrix offers a promising strategy to achieve superior separation performance. This review aims at providing a complete overview of the recent advances in nanocomposite membranes for enhanced CO 2 separation. Nanofillers of various dimensions and properties are categorized and effects of nature and morphology of the 0D to 2D nanofillers in the corresponding nanocomposite membranes of different polymeric matrixes are discussed with regard to the CO 2 permeation properties. Moreover, a comprehensive summary of the performance data of various nanocomposite membranes is presented. Finally, the advantages and challenges of various nanocomposite membranes are discussed and the future research and development opportunities are proposed.
Liyuan Deng
added a research item
In the present work, PEGDME with different molecular weight (Mn ∼ 250 and 500 g/mol) was added into Nafion-based membranes as CO2-philic additive, aiming at improving their CO2 capture performance. The physical, chemical and morphological characteristics of the hybrid membranes were thoroughly investigated using different techniques, including TGA, XRD, SEM and FTIR. The gas transport properties were studied by means of mixed gas permeation tests at different relative humidity conditions. CO2 permeability is greatly enhanced upon the addition of the PEGDME. The addition of 40 wt% PEGDME 250 into the Nafion matrix shows a CO2 permeability of 57.4 Barrer at the dry state, which is 36 folds higher than the pristine Nafion. The presence of water vapor in the gaseous streams further enhances the CO2 permeability and CO2/N2 selectivity, reaching a value of 446 Barrer and 37, respectively, under fully saturated conditions. However, the further increase of the PEGDME content in the Nafion matrix leads to undesirable micro phase separation (defects were observed from the morphological analysis), causing serious loss of the selectivity. Finally, in order to improve the theoretical understanding of the transport mechanism, a modified Maxwell model was successfully applied to describe the separation performances of the resulted Nafion/PEGDME hybrid membrane. The model results suggest that an interconnected CO2-philic structure is obtained upon the addition of PEGMDE and water to the ionomer matrix, forming preferential pathways for gas permeation able to enhance the membrane performance.
Simone Ligi
added 2 research items
Bio-based polyamide 11 (PA11)-graphene nanocomposites with different filler concentrations (0.25, 0.5, 0.75, 1.5 and 3 wt%) were prepared by In Situ polymerization starting from a water dispersed suspension of graphene nanoplatelets. The effects of the incorporation of the filler were studied in terms of molecular, morphological, thermal and dynamic mechanical properties of the final materials. During the crystallization process from the melt, the filler induces a notable nucleating effect even if the crystal growth rate tends to decrease. The glass transition temperature tends to shift to higher temperatures indicating a decrement of the molecular mobility. Thermal stability is enhanced confirming a good filler dispersion into the matrix. Mechanical reinforcement, investigated by means of a dynamic mechanical thermal analyzer was also highlighted. It was observed that a graphene concentration of 0.75 wt% induces the highest final performances.
We fabricated novel composite (mixed matrix) membranes based on a permeable glassy polymer, Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), and variable loadings of few-layer graphene, to test their potential in gas separation and CO2 capture applications. The permeability, selectivity and diffusivity of different gases as a function of graphene loading, from 0.3 to 15 wt %, was measured at 35 and 65 °C. Samples with small loadings of graphene show a higher permeability and He/CO2 selectivity than pure PPO, due to a favorable effect of the nanofillers on the polymer morphology. Higher amounts of graphene lower the permeability of the polymer, due to the prevailing effect of increased tortuosity of the gas molecules in the membrane. Graphene also allows dramatically reducing the increase of permeability with temperature, acting as a “stabilizer” for the polymer matrix. Such effect reduces the temperature-induced loss of size-selectivity for He/N2 and CO2/N2, and enhances the temperature-induced increase of selectivity for He/CO2. The study confirms that, as observed in the case of other graphene-based mixed matrix glassy membranes, the optimal concentration of graphene in the polymer is below 1 wt %. Below such threshold, the morphology of the nanoscopic filler added in solution affects positively the glassy chains packing, enhancing permeability and selectivity, and improving the selectivity of the membrane at increasing temperatures. These results suggest that small additions of graphene to polymers can enhance their permselectivity and stabilize their properties.
Marco Giacinti Baschetti
added a research item
In order to address the need for more efficient technologies for carbon capture applications, a novel type of nanocellulose based hybrid membrane has been successfully prepared by blending the commercial Polyvinylamine solution Lupamin® 9095 (BASF) with Nano Fibrillated Cellulose (NFC) to improve its mechanical and separation capabilities. Self-standing films with different nanocellulose loading (from 30 to 70 wt%) have been prepared and characterized at 35 °C through water vapor sorption experiments and humid gas permeation tests. As expected, membrane permeability consistently increased with increasing water vapor and a higher presence of Lupamin in the film resulted in an increment of both gas permeability and selectivity. In particular blends with a NFC content of 70 wt% Lupamin reached an ideal selectivity of 135 for the separation of CO2/CH4 and 218 for CO2/N2, at 60 RH%, while the maximum permeability in the order of 187 Barrer was instead reached at 80% RH. Water vapor solubility was also measured and modeled through Park Model to correlate the gas separation properties with the effective content of water present in the membrane matrix. As expected, a higher content of the hydrophilic polymer resulted in a larger water uptake, which at medium to high humidity appeared to trigger a water clustering phenomenon in the matrix. This fact was accompanied by a substantial relaxation of the polymer network, causing a marked reduction of selectivity, which dropped, at the highest RH investigated, to values in the order of 30 and 80 towards CH4 and N2 respectively. Despite this loss in performance, most materials tested still showed very interesting properties, well above Robeson's 2008 Upper Bound, making them an interesting alternative for traditional gas separation processes.
Simone Ligi
added 4 research items
A new type of hydrophilic polymeric membrane based on microfibrillated cellulose (MFC) has been investigated to determine its potential in the field of gas separation, with special reference to carbon capture and natural gas sweetening. In particular, pure MFC films and MFC/Lupamin® (a commercial polyvinylamine produced by BASF) nanocomposite membrane have been synthesized and characterized. The effect of relative humidity on gas permeability was considered and independent water vapor sorption experiments were also carried out in order to correlate the permeation results to the actual water content in the materials. The experimental results showed that very good CO2/N2 and CO2/CH4 selectivity (in the order of 500 and 350 respectively) could be reached by using pure MFC films, which however showed limited CO2 permeability, never exceeding 25 Barrer, even at the highest relative humidity investigated. To increase the transmembrane flux, a hydrophilic polyvinylamine (Lupamin®) has been added to the pure MFC: the addition caused a marked increase in permeability of up to one order of magnitude but decreased the selectivity to about the same extent, thus decreasing the overall membrane performance. The reason of such behavior seems to be related to the amount of water absorbed by the membrane as the MFC/Lupamin nanocomposite resulted to be highly swollen by water vapor. Nonetheless, both the investigated materials showed separation performances that are above the 2008 Robeson's upper bound for CO2/N2 and CO2/CH4 systems, disclosing an attractive potential for the production of advanced gas separation membranes.
Membranes obtained by adding small amounts (1 wt %) of nanoplatelets of graphene (G) and graphene oxide (GO) to poly(1-trimethylsilyl-1-propyne) (PTMSP) were fabricated with a simple route, and their gas permeability was measured at 30 °C over 9 months. In most cases, variations of PTMSP permeability due to the addition of filler are limited, while the ideal selectivity of CO2/He, CH4/He, and CH4/N2 is slightly enhanced by addition of filler. Specific measurements indicate that the CO2 and CH4 diffusivity are more strongly affected by addition of graphene than their solubility: such behavior indicates that the filler modifies mainly the microstructure of the polymer rather than its interactions with the gas, as it is reasonable. The most significant quantitative effect observed after filler incorporation is the reduction of PTMSP aging, that was monitored by studying gas permeability after 9 months of aging at room temperature and after annealing at 200 °C. The reduction of aging observed after adding graphene is more significant than that obtained with large amounts (up to 20 vol %) of other inorganic fillers, like MgO and TiO2, even though the amount of filler added in this work is small (<1 wt %). Such behavior, coupled to the generally favorable effect of filler on gas permeability and selectivity, makes such materials extremely promising for real applications.
Liyuan Deng
added a project goal
“NanoMEMC2”, NanoMaterials Enhanced Membranes for Carbon Capture, WP3, HFTM Membranes characterization, Horizon2020, 2016-2019