Archived project

Micromechanics of Programmable Matter

Goal: The purpose of the project is to make progress in the modelling and control of programmable matter (PM) - a class of future meta-materials, composed of microscopic active modules. Through proper programming of the modules, objects made of PM could potentially change shape, vary their physical properties, or actively respond to environmental stimuli.

Updates
0 new
1
Recommendations
0 new
0
Followers
0 new
7
Reads
0 new
67

Project log

Jakub Lengiewicz
added a research item
We propose a methodology of planning effective shape shifting and locomotion of large-ensemble modular robots based on a cubic lattice. The modules are divided into two groups: fixed ones, that build a rigid porous frame, and mobile ones, that flow through the frame.Mobile modules which flow out of the structure attach to the frame, advancing its boundary. Conversely, a deficiency of mobile modules in other parts of the boundary is corrected by decomposition of the frame. Inside the structure, appropriate module flow is arranged to transport the modules in a desired direction, which is planned by a special distributed version of a maximum flow search algorithm. The method engages a volume of modules during reconfiguration, which is more efficient than common surface-flow approaches. Also, the proposed interpretation as a flow in porous media with moving boundaries seems particularly suitable for further development of more advanced global reconfiguration scenarios. The theoretical efficiency of the method is assessed, and then partially verified by a series of simulations. The method can be possibly also applied to a wider class of modular robots, not necessarily cubic-lattice-based. Full text: http://rdcu.be/HbA4
Jakub Lengiewicz
added a project reference
Jakub Lengiewicz
added a research item
We discuss selected mechanical aspects of self-reconfiguration of densely-packed modular robots. The change of connection topology and transport of modules are fundamental mechanisms for these systems, which determine their desired emergent behavior, e.g., movement, shape change or interaction with their surroundings. At the same time, reconfiguration affects the forces between modules. We present a distributed procedure by which a robot can predict if the next planned reconfiguration step will overstress intermodular connections. We use a Finite Element model of a modular robot, with one-node-per-module discretization and beam elements representing intermodular connections. The analysis is restricted to static loads and linear elasticity. We present a distributed procedure of aggregation of the stiffness matrix and iterative solution of the resulting equations of elasticity. The procedure is illustrated with numerical examples and analyzed in terms of its efficiency.
Jakub Lengiewicz
added 4 research items
We propose a new class of modular-robotic structures, intended to produce forces which scale with the number of modules. We adopt the concept of a spherical catom and extend it by a new connection type which is relatively strong but static. We examine analytically and numerically the mechanical properties of two collective-actuator designs. The simulations are based on the discrete element method, with friction and elastic deformations taken into account. One of the actuators is shown to generate forces proportional to its volume. This property seems necessary for building modular structures of useful strength and dimensions.
The term Programmable Matter (PM) describes the class of future meta-materials of programmable and controllable properties and behavior, e.g., able to autonomously transform into an arbitrary shape. The robotic approaches towards PM are based on the concept of cooperation of millions of micro-robots (modules), acting at a very fine length-scale and collectively imitating deformation of a macroscopically continuous material. Recent ideas about reconfiguration of a collective of modules to obtain a desired overall mechanical response are promising. However, they are limited by the strength of individual connections between modules. In the present work, we propose a way of arranging spherical modules into microstructures, in which some connections are fixed and mechanically stronger, and the rest are active (reconfigurable) but weaker. If the fixed connections are sufficiently strong, the proposed microstructures perform the function of collective actuation by exerting forces proportional to their volumes. Two variants of a linear-actuator microstructure are presented and studied in more detail. A rotary-actuator microstructure is also introduced.
A collective actuator is a self-reconfigurable modular-robotic structure which produces useful mechanical work through simultaneous reconfiguration of its constituent units. An actuator is additionally called scalable if its force-to-weight ratio does not depend on the number of its member modules. In this work, we consider scalable collective actuators built from spherical catoms with two connection types: strong but fixed and weak but mobile. We investigate how to construct these actuators in such a way, as to maximize their force-to-weight ratio. We present a number of designs of high strength, whose force capacities significantly exceed those of similar actuators reported previously.
Jakub Lengiewicz
added 3 project references
Jakub Lengiewicz
added an update
That's why modular robots should take into consideration mechanical constraints while planning self-reconfiguration or motion...
 
Jakub Lengiewicz
added a project reference
Jakub Lengiewicz
added a project goal
The purpose of the project is to make progress in the modelling and control of programmable matter (PM) - a class of future meta-materials, composed of microscopic active modules. Through proper programming of the modules, objects made of PM could potentially change shape, vary their physical properties, or actively respond to environmental stimuli.