Project

Metadichol

Updates
0 new
1
Recommendations
0 new
0
Followers
0 new
3
Reads
5 new
1138

Project log

Palayakotai R Raghavan
added a research item
Human nuclear receptors (NRs) involve 49 ligand-dependent transcription factors that are important for regulating the cell cycle and processes. There are many literature references to work on NR expression in many organs, abnormal cells, and tissues. However, a simple universal method to study the expression of NR is still missing. Here, we present systematic profiling of NRs in human umbilical cord stem cell lines and assess the expression of the 48 human NRs by quantitative real-time (qRT)-PCR using Metadichol, a nanoemulsion made of natural lipid alcohol. Metadichol-treated umbilical cord cells and fibroblasts, where all cells expressed NRs at a concentration range of 1 pg-100 ng/mL in a dependent manner, were detected by qRT-PCR and qualified by Western blotting. This method will allow the study of many organs and tissues and expand our understanding of the role of NRs and their role in mitigating diseases.
Palayakotai R Raghavan
added an update
we have initiated a study on the effect of Metadichol on Cardiac Fibroblast cells
 
Palayakotai R Raghavan
added a research item
Background New pathogenic virus outbreaks, occurring with increasing regularity, are leading us to explore novel approaches, which will reduce the reliance on time-consuming vaccine modes to halt the outbreaks. The requirement is to find a universal approach to disarm any new and as yet unknown viruses as they appear. A promising approach could be targeting lipid membranes, which are common to all viruses and bacteria.The ongoing pandemic of severe acute respiratory syndrome-coronavirus 2 (SARS-COV-2) has reaffirmed the importance of interactions between components of the host cell plasma membrane and the virus envelope as a critical mechanism of infection. Metadichol®, a nano lipid emulsion, has been examined and shown to be a strong candidate to help stop the proliferation of SARS-COV-2.Naturally derived substances, such as long-chain saturated lipid alcohols, reduce the infectivity of various types of viruses, including coronaviruses such as SARS-COV-2, by modifying lipid-dependent attachment to human host cells. SARS-COV-2 uses the receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. Methods Metadichol was tested against TMPRSS2 ana ACE2 invitro using commercial available kits. Also it was tested against the live virus in Caco2 cells to test for inhibition of viral replication of SARS-COV-2.ResultsMetadichol®, a nano lipid formulation of long-chain alcohols, has been shown to inhibit TMPRSS2 (EC50 96 ng/ml). Compared to the inhibitor camostat mesylate (EC50 26000 ng/ml), it is 270 times more potent. Additionally, Metadichol® is also a weak inhibitor of ACE2 at 31 µg/ml. Further a live virus assay in Caco2 cells, Metadichol® inhibited SARS-CoV-2 replication with an EC90 of 0.16 µg/ml.Conclusions Metadichol inhibits SARS-COV-2 virus and since it a non toxic molecule can be easily tested in humans and as it has LD 50 of over 5000 mg/kilo and could help mitigate the crisis facing the world today.
Palayakotai R Raghavan
added 2 research items
We donated samples of Metadichol to a large covid hospital that treats only covid patients. The results were impressive 75% covid negative after 4 days @ dosage of 20 mg per day
New pathogenic virus outbreaks, occurring with increasing regularity, are leading us to explore novel approaches, which will reduce the reliance on time-consuming vaccine modes to halt the outbreaks. The requirement is to find a universal approach to disarm any new and as yet unknown viruses as they appear. A promising approach could be targeting lipid membranes, which are common to all viruses and bacteria. The ongoing pandemic of severe acute respiratory syndrome-coronavirus 2 (SARS-COV-2) has reaffirmed the importance of interactions between components of the host cell plasma membrane and the virus envelope as a critical mechanism of infection. Metadichol®, a nano lipid emulsion, has been examined and shown to be a strong candidate to help stop the proliferation of SARS-COV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce the infectivity of various types of viruses, including coronaviruses such as SARS-COV-2, by modifying lipid-dependent attachment to human host cells. SARS-COV-2 uses the receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. Metadichol®, a nano lipid formulation of long-chain alcohols, has been shown to inhibit TMPRSS2 (EC50 96 ng/ml). Compared to the inhibitor camostat mesylate (EC50 26000 ng/ml), it is 270 times more potent. Additionally, Metadichol® is also a weak inhibitor of ACE2 at 31 µg/ml. Further a live virus assay in Caco2 cells, Metadichol® inhibited SARS-CoV-2 replication with an EC90 of 0.16 µg/ml.
Palayakotai R Raghavan
added a research item
New pathogenic virus outbreaks, occurring with increasing regularity, are leading us to explore novel approaches, which will reduce the reliance on time-consuming vaccine modes to halt the outbreaks. The requirement is to find a universal approach to disarm any new and as yet unknown viruses as they appear. A promising approach could be targeting lipid membranes, which are common to all viruses and bacteria. The ongoing pandemic of severe acute respiratory syndrome-coronavirus 2 (SARS-COV-2) has reaffirmed the importance of interactions between components of the host cell plasma membrane and the virus envelope as a critical mechanism of infection. Metadichol®, a nano lipid emulsion, has been examined and shown to be a strong candidate to help stop the proliferation of SARS-COV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce the infectivity of various types of viruses, including coronaviruses such as SARS-COV-2, by modifying lipid-dependent attachment to human host cells. SARS-COV-2 uses the receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. Metadichol®, a nano lipid formulation of long-chain alcohols, has been shown to inhibit TMPRSS2 (EC50 96 ng/ml). Compared to the inhibitor camostat mesylate (EC50 26000 ng/ml), it is 270 times more potent. Additionally, Metadichol® is also a weak inhibitor of ACE2 at 31 µg/ml. Further a live virus assay in Caco2 cells, Metadichol® inhibited SARS-CoV-2 replication with an EC90 of 0.16 µg/ml.
Palayakotai R Raghavan
added a research item
New pathogenic virus outbreaks, occurring with increasing regularity, are leading us to explore novel approaches, which will reduce the reliance on time-consuming vaccine modes to halt the outbreaks. The requirement is to find a universal approach to disarm any new and as yet unknown viruses as they appear. A promising approach could be targeting lipid membranes, which are common to all viruses and bacteria. The ongoing pandemic of severe acute respiratory syndrome-coronavirus 2 (SARS-COV-2) has reaffirmed the importance of interactions between components of the host cell plasma membrane and the virus envelope as a critical mechanism of infection. Metadichol®, a nano lipid emulsion, has been examined and shown to be a strong candidate to help stop the proliferation of SARS-COV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce the infectivity of various types of viruses, including coronaviruses such as SARS-COV-2, by modifying lipid-dependent attachment to human host cells. SARS-COV-2 uses the receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. Metadichol®, a nano lipid formulation of long-chain alcohols, has been shown to inhibit TMPRSS2 (EC50 96 ng/ml). Compared to the inhibitor camostat mesylate (EC50 26000 ng/ml), it is 270 times more potent. Additionally, Metadichol® is also a weak inhibitor of ACE2 at 31 µg/ml. Further a live virus assay in Caco2 cells, Metadichol® inhibited SARS-CoV-2 replication with an EC90 of 0.16 µg/ml. Keywords: Coronavirus, SARS-COV-2, COVID-19, ACE2, TMPRSS2, VDR, Metadichol
Palayakotai R Raghavan
added a research item
New pathogenic virus outbreaks with increasing regularity are leading us to explore novel approaches, which will reduce the reliance on a time-consuming vaccine mode to halt the strike. The requirement is to find a universal approach to disarm any new and as yet unknown viruses as they appear. A promising approach could be by targeting the lipids membranes, common to all viruses and bacteria. The ongoing pandemic of the SARS-coronavirus 2 (SARS-CoV-2) has restated the importance of interactions between components of the host cell plasma membrane and the virus envelope as a critical mechanism of infection. Metadichol ®, a nano lipid emulsion, has been examined and shown to be a strong candidate to help stop the proliferation of the SARS-COV-2. Naturally derived substances, such long chain saturated lipid alcohols reduce the infectivity of various types of viruses, including the coronavirus like SARS-COV-2, by modifying the lipid-dependent attachment to human host cells. SARS-COV-2 uses the receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. Metadichol®, a nano lipid formulation of long-chain alcohols, has been shown to inhibit TMPRSS2 (EC50 of 96 ng/ml). Compared to the inhibitor Camostat Mesylate (26000 ng/ml), it is 270 times more potent. Also, Metadichol ® is a moderate inhibitor of ACE2 @ 31 µg/ml. In the SARS-COV2 antiviral assay using CACO2 cells, it has an EC90 of 0.16 µg/ml.
Palayakotai R Raghavan
added a research item
Metadichol ® is a food derived nano emulsion that is effective against many viruses ( over 17 of them) . It acts on viruses through multiple pathway most likely through disruption of the protective lipid membrane layer than viruses. In case of COVID 19 we present data that it blocks optimally ACE2 and Nuclear Androgen receptor which controls expression of TMPRSS2. Both TMPRSS2 and ACE 2 are need for viral entry. Optimal blocking is necessary as both ACE2 and AR are needed for other functions in the body to maintain Homeostasis. In addition Metadichol binds to VDR as an inverse agonist the only one known and VDR activation is necessary for a anti viral response. Metadichol also endogenously increases Vitamin C that leads to IgA,IgG and IgM and also Interferons that are needed to mount a anti viral response
Palayakotai R Raghavan
added a research item
METADICHOL increases Vitamin C and reaches levels not achievable orally and this has enormous implications in infectious diseases LIKE SARS and Corona
Palayakotai R Raghavan
added a research item
An estimated 200 million individuals worldwide have a thyroid disorder. Thyroid diseases affect seven times more women than men. People not diagnosed make up the majority of thyroid patients. There is a need to find novel and safe ways to change the underlying disease processes, rather than merely stop excess thyroid hormone production as in hyperthyroidism. Metadichol® is a nano emulsion of an extract of long-chain alcohols from food that is an inverse agonist of VDR (Vitamin D receptor), AHR (Aryl Hydrocarbon Receptor), and RORC (RAR Related Orphan Receptor C). The work presented here shows that Metadichol® is an inverse agonist of THRA (Thyroid Receptor Alpha) and THRB (Thyroid Receptor Beta). Case studies are presented that show how it can safely treat a multitue of thyroid related diseases. Network and pathway enrichment studies are presented that show how Metadichol® may be involved in action on multiple receptors and exerting its effects through multiple pathways. Metadichol® is the first of a breed of molecules that moves the goal post from the concept of ‘one drug, one target’ toward simultaneously targeting multiple targets, that can potentially lead to successful treatment of many diseases. Given the safety profile of Metadichol®, it would not only mitigate thyroid disease but prevent it and reducing the burden on healthcare budgets worldwide.
Palayakotai R Raghavan
added a research item
Metadichol inhibits the list of microbes below. Asperligus brasiliensis, Streptococcus epidermis, Neisseria gonorrhoeae, Streptococcus pyogenes, Pseudomonas aeruginosa, Shigella boydii, Escherichia coli (E. coli), Streptococcus mutans, Staphylococcus Aureus, methicillin-resistant (MRSA),Micrococcus luteus, Candid auris* ( strains 381,385,390), Salmonella enterica, Listeria monocytogenes, Candida albicans, Bacillus cereus Entercoccus faecium, Clostridium perfrigens, Zygosacch aromyces rouxti * Candida Auris is invasive candidiasis, first identified in 2009, can cause infection of the bloodstream, central nervous system, and internal organs.
Palayakotai R Raghavan
added a research item
Humans face a constant threat from pathogens like influenza varieties H1N1, H5N1, and others and there is a need to prevent these from epidemics. The pathogens depend on successful colonization of the host in order to reproduce and multiply. Sialidases are known as neuraminidases are a group of enzymes, the most abundant of these being the exo-sialidases that can catalyze the cleavage of sialic acids from carbohydrates, glycoproteins or glycolipids. Sialidases have been thoroughly studied since their discovery 75 years ago and their occurrence in bacteria and viruses is widespread. They are found in diverse virus families and bacteria and other microbes. Moreover, sialic acids serve as a receptor for various pathogens. This allows bacteria like H1N1 or other influenza viruses, to enter the host cell. There is a need to block sialidases as they release sialic acid that serves as nutrition for the microbes and as well allows them to bind and invade the host cell where they can proliferate. This makes sialidases an interesting target to control pathogenic activity. Metadichol ® is nanoemulsion of long-chain lipid alcohols derived from food ingredients. In rats, it has an LD50 of 5000 mg/kilo and its ingredients are present in many foods we consume on a daily basis. It has antiviral and antibacterial and anti-parasitic properties. We studied inhibition of Sialidases by inducing it with Lipopolysaccharide (LPS) using THP1 cells. Metadichol showed inhibition at 1 picogram per ml to 1 nanogram per/ml. Compared to Prednisone. It is 100 times more active. Previous studies on Metadichol ® showed that it is toxic to cancer cells at higher concentrations. Since it is safer, it has the potential of being directly tested on humans without side effects and could have a potential role in mitigating the pathogens that a burden on the Public health system.
Palayakotai R Raghavan
added a research item
An estimated 200 million individuals worldwide have a thyroid disorder. Thyroid diseases affect seven times more women than men. People not diagnosed make up the majority of thyroid patients. There is a need to find novel and safe ways to change the underlying disease processes, rather than merely stop excess thyroid hormone production as in hyperthyroidism. Metadichol® is a nano emulsion of an extract of long-chain alcohols from food that is an inverse agonist of VDR (Vitamin D receptor), AHR (Aryl Hydrocarbon Receptor), and RORC (RAR Related Orphan Receptor C). The work presented here shows that Metadichol® is an inverse agonist of THRA (Thyroid Receptor Alpha) and THRB (Thyroid Receptor Beta). Case studies are presented that show how it can safely treat a multitue of thyroid related diseases. Network and pathway enrichment studies are presented that show how Metadichol® may be involved in action on multiple receptors and exerting its effects through multiple pathways. Metadichol® is the first of a breed of molecules that moves the goal post from the concept of ‘one drug, one target’ toward simultaneously targeting multiple targets, that can potentially lead to successful treatment of many diseases. Given the safety profile of Metadichol®, it would not only mitigate thyroid disease but prevent it and reducing the burden on healthcare budgets worldwide.
Palayakotai R Raghavan
added a research item
Humans are keenly aware of their mortality. Given a limited time what we do with our life is a reflection of knowledge of our mortality. In 2009 the Nobel prize in medicine to Jack W Szostak, Elizabeth Blackburn, Carol W Greider for their work on Telomerase and scientific research exploded in this area. Telomere protect chromosome ends the Telomerase enzyme maintains Teleomere length. This activity of Telomerase is essential in aging and stem cells and achieving longer life spans. Telomerase is expressed in 85% of human cancer cell lines, but its enzymatic activity is not detectable in most human somatic cells which constitute the vast majority of the cells in the human body. There is a need for increased telomerase activity in stem cells for use in the treatment of therapies where there is an active role for telomerase. Umbilical Cord Blood (UCB) provides an attractive source of stem cells for research and therapeutic uses. Work shown here characterizes the gene expression changes from Umbilical cord cells differentiate toward telomerase on treatment with Metadichol ®. Metadichol ® is a nanoemulsion of long-chain alcohols that is nontoxic. It is a mixture of long-chain alcohols derived from food. The work presented here is about the effect of Metadichol ® on Telomerase expression profile in Umbilical cord cells. Our results using q-RT-PCR show increases of mRNA telomerase expression by Sixteen-fold at one picogram but down-regulates expression at higher concentrations of 100 pg, 1 ng, 100 ng and one microgram per ml concentration. Western blot studies showed expression of Telomerase protein which is slightly higher than control at one picogram, i.e., Telomerase protein expression continues at replacement level. Since it is devoid of toxic effects, it can be directly tested on humans and is in use today as an immune boosting supplement. Metadichol ® increases expression of Klotho an anti-aging gene expression in cancer cell lines by Four to Tenfold , and Klotho gene has been documented to inhibits the growth of cancer cells. Metadichol ® also inhibits TNF, ICAM1, CCL2, and BCAT1 which that is associated with proliferation in yeast and increased metastatic potential in human cancers. It paves the way for safe clinical testing and research and study of Telomerase biology and its use in humans.
Palayakotai R Raghavan
added a research item
Metadichol® is a Nanoemulsion of long-chain alcohols found in many foods. Metadichol acts as an inverse agonist on Nuclear Vitamin D receptors (VDR) that have a ubiquitous presence in cells and acts by modulating the immune system and affects many biological processes to modulate many diseases. We have demonstrated that Metadichol is useful in both type 1 and two diabetes and in modulating insulin levels and reducing sugar levels and thus increasing insulin sensitivity. We had earlier shown that it binds to VDR and thus an effect on glucose homeostasis that is a hallmark of VDR pathways. We now report also that it is an agonist of GPR120 (G protein-coupled receptor 120) which has emerged as a key target for metabolic diseases like obesity and insulin resistance. In the in-vitro assay, Metadichol is comparable to GW9508 the most extensively used standard compound in GPR 120 research.
Palayakotai R Raghavan
added 2 research items
Liver diseases are becoming a major health concern. In the developing countries it is due to microbial infection. In the rest of the developed world it is due to alcohol abuse. Chronic liver disease and cirrhosis are a significant health concern in western countries. It is the fifth most common cause of death, after heart disease, cancer, stroke, and chest disease. The liver is capable of regeneration, but it can be overwhelmed leading to liver diseases like cirrhosis and hepatocellular cancer (HCC). Vitamin D levels are low in most patients with liver diseases, and this suggests possible therapeutic benefits with use of vitamin D or its analogues. Vitamin D, through the vitamin D nuclear receptor (VDR) plays a crucial role in mineral ion homeostasis. The liver has a central role in vitamin D synthesis and there is a need for an agent that will not lead to hypercalcemia. Metadichol, a nano emulsion of long-chain alcohols derived from food, is an inverse agonist of Vitamin D can fill this void. In Diabetic rat studies, it inhibits TNF alpha, ICAM1 (intracellular adhesion molecule), CCL2 (chemokine CC motif) also referred to as monocyte chemoattractant protein 1 (MCP1). All these cytokines, chemokines are known to have important role in liver diseases. We show that Metadichol indeed does work in liver disease patients by normalizing essential liver enzymes ALT, AST and ALP, and GGT. This approach is an example where Metadichol targets multiple genes and via multiple pathways to bring about homeostasis of the liver and is a useful, safe, non-toxic product in treating liver diseases and alleviating a global threat.
Palayakotai R Raghavan
added a research item
CD33 also known as Siglec-3 is endogenously expressed in stem cells and is a marker for the myeloid lineage of cells. Increased expression of CD33 thus allows it to bind to any Sialic Acids (SIAs). These acids are binding sites for pathogens and toxins. By binding to these acids, CD33 can prevent invasion of hosts by these pathogens. Down-regulation of CD33, increase the release of the pro-inflammatory cytokine TNF-α by monocytes that increases reactive oxygen species that are involved in diseases like diabetes mellitus, Alzheimer's, cardiovascular diseases asthma, and in various cancers. The up-regulation of CD33 using Metadichol ® was studied using Wharton's Jelly Mesenchymal Stem Cells (MSCs) isolated from human umbilical cord and were grown in p-35 dishes until confluent and treatment was carried out with different concentrations. One dish was untreated and considered as control. The treated and untreated cells were analyzed using Flow Cytometry. The cells treated at 100 pg of Metadichol ® has shown the highest increase (>400 fold) in CD33++ expression (48.77%) compared to untreated control (0.11%).
Palayakotai R Raghavan
added a research item
Klotho is an anti-aging protein that is mostly secreted by the kidneys, the brain, and the thyroid. It plays a significant role in regulating kidney function and vascular health. Klotho gene is named after "the Spinner" (Clotho from Greek mythology), the goddess who spins the thread of life. Klotho is a transmembrane protein known to be a co-receptor for Fibroblast Growth Factor-23. Klotho gene is expressed in a variety of tissues changes in the levels are associated with many diseases. Klotho is a tumor suppressor in breast cancer and its expression is reduced in human pancreatic adenocarcinoma, and treatment with klotho inhibits the growth of pancreatic cancer cells in vitro and in vivo. Growing evidence suggests that an increase in KL expression may be beneficial for age-related diseases such as arteriosclerosis and diabetes. It remains a challenge today to induce Klotho expression. Herein we show that treating pancreatic cancer cells PANC1, MIAPACA and COLO-205 with Metadichol® a novel food based lipid emulsion of long chain alcohols at picogram/ml, concentration led to a 4-10 fold increase in Klotho expression as seen quantitative RT-PCR. These results suggest the use of Metadichol® given its constituents that are present in foods we consume every day is a novel therapeutic intervention for pancreatic cancer and other diseases.
Palayakotai R Raghavan
added a research item
Klotho is an anti-aging protein that is mostly secreted by the kidneys, the brain, and the thyroid. It plays a significant role in regulating kidney function and vascular health. Klotho gene is named after "the Spinner" (Clotho from Greek mythology), the goddess who spins the thread of life. Klotho is a transmembrane protein known to be a co-receptor for Fibroblast Growth Factor-23. Klotho gene is expressed in a variety of tissues changes in the levels are associated with many diseases. Klotho is a tumor suppressor in breast cancer and its expression is reduced in human pancreatic adenocarcinoma, and treatment with klotho inhibits the growth of pancreatic cancer cells in vitro and in vivo. Growing evidence suggests that an increase in KL expression may be beneficial for age-related diseases such as arteriosclerosis and diabetes. It remains a challenge today to induce Klotho expression. Herein we show that treating pancreatic cancer cells PANC1, MIAPACA and COLO-205 with Metadichol® a novel food based lipid emulsion of long chain alcohols at picogram/ml, concentration led to a 4-10 fold increase in Klotho expression as seen quantitative RT-PCR. These results suggest the use of Metadichol® given its constituents that are present in foods we consume every day is a novel therapeutic intervention for pancreatic cancer and other diseases.
Palayakotai R Raghavan
added 2 research items
Psoriasis affects 3% of the population worldwide, and there is no known cure. Psoriasis is associated with an increased risk of psoriatic arthritis, lymphomas, cardiovascular disease, and Crohn’s disease. Psoriasis treatments today include steroid and vitamin D3 cream, ultraviolet light, and immune systemsuppressing medications such as methotrexate. The T cells responsible for psoriasis are Th1 and Th l7 cells. IL-22, produced by Th17 cells, is crucial for the proliferation of keratinocytes. IL-22 with the help of IL-17 can induce the critical events of psoriasis. To maintain Th17 cells, IL-23 is required, and it is released from tumor necrosis factor-alpha (TNF-alpha) induced pathways. The pathophysiology of psoriasis involves RORC (retinoic acid receptor-related orphan nuclear receptor gamma) as a critical transcription factor for the development of Th17 cells. FDA has approved an antibody Secukinumab® targeting TNF-α for the treatment of psoriasis. Other FDA approved drugs are Tremfya® targeting IL23 for treatment of moderate to severe plaque psoriasis and Taltz® that blocks IL17 for treatment of plaque psoriasis. Metadichol® a nanoformulation of long-chain lipid alcohols derived from food is a TNF-alpha inhibitor and also binds to Vitamin D receptor (VDR) that could have beneficial effects on Psoriasis. VDR modulates Th1-mediated inflammatory disease like psoriasis. We now present evidence that Metadichol is an inverse agonist of RORγt and AHR (Aryl Hydrocarbon Receptor) thus controlling Th17, IL17 and IL22. Being a TNF-alpha inhibitor, it can control IL23 thus blocking the significant pathways that exacerbate psoriasis. We present case studies of 7 patients afflicted with psoriasis and skin related conditions and how treatment with Metadichol resolved the underlying disease. Metadichol® has properties that allow its use as a safe nontoxic, toxic solution to combating the growing number of psoriasis cases.
Palayakotai R Raghavan
added a research item
Insulin and IGF signaling require a family of scaffold proteins, also called as Insulin Receptor Substrate (IRS) proteins to integrate extracellular signals into intracellular responses, leading to cellular effects. Two main IRS proteins in humans are IRS1 and IRS2 and are widely expressed in most human and mammalian tissues. In this study, IRS1, IRS2, GLUT4 gene expression is quantified in Umbilical Cord (UC) cell line by semi quantitative- PCR. The internal control β-actin was used to normalize the IRS1, IRS2, GLUT4 gene expression levels. This is the first example of UC cells being induced by a ligand in expressing genes that regulate glucose and insulin levels. Metadichol® treatment at different concentrations on UC cells showed upregulation of IRS1, IRS2 and GLUT4. 100 pg/mL concentrations showed the highest upregulation of IRS1, IRS2 and GLUT4 expression. 1 ng and 100 ng/mL treatment showed marginal. Metadichol® is in addition a TNF alpha inhibitor and also inhibits Plasminogen Activation Inhibitor (PAI1) also known as SERPINE1. These genes play an important role in diabetes. The experimental results fully correlated with curated literature data using Bioinformatics software. Network analysis show the uniqueness of shared genes, IRS1, IRS2, GLUT4, TNF, PAI1, acting through multiple pathways that target multiple diseases.
Palayakotai R Raghavan
added a research item
Insulin and IGF signaling require a family of scaffold proteins, also called as Insulin Receptor Substrate (IRS) proteins to integrate extracellular signals into intracellular responses, leading to cellular effects. Two main IRS proteins in humans are IRS1 and IRS2 and are widely expressed in most human and mammalian tissues. In this study, IRS1, IRS2, GLUT4 gene expression is quantified in Umbilical Cord (UC) cell line by semi quantitative-PCR. The internal control β-actin was used to normalize the IRS1, IRS2, GLUT4 gene expression levels. This is the first example of UC cells being induced by a ligand in expressing genes that regulate glucose and insulin levels. Metadichol ® treatment at different concentrations on UC cells showed upregulation of IRS1, IRS2 and GLUT4. 100 pg/mL concentrations showed the highest upregulation of IRS1, IRS2 and GLUT4 expression. 1 ng and 100 ng/mL treatment showed marginal. Metadichol ® is in addition a TNF alpha inhibitor and also inhibits Plasminogen Activation Inhibitor (PAI1) also known as SERPINE1. These genes play an important role in diabetes. The experimental results fully correlated with curated literature data using Bioinformatics software. Network analysis show the uniqueness of shared genes, IRS1, IRS2, GLUT4, TNF, PAI1, acting through multiple pathways that target multiple diseases.
Palayakotai R Raghavan
added a research item
Metadichol, a novel nano emulsion of lipid alcohols, up regulates the expression of GULO gene in mouse at picogram levels. 3T3-L1 pre adipocyte cells were differentiated using differentiating media. Post differentiation, the cells were treated with different concentrations of Metadichol for 24 hours and untreated cells served as control. Whole RNA was isolated after the treatment period and semi-quantitative reverse transcription PCR was run with GULO gene specific primer to obtain cDNA. Relative gene expression of GULO was determined by analysis of GULO gene amplicons using image J software. The GULO gene expression in the treated cells was up regulated fourfold relative to basal level of untreated cells. Relative gene expression at concentrations 1 μg/ml, 100 ng/ml, 1 ng/ml, 100 pg/ml, 1 pg/ml was found to be 2.11, 2.64, 2.96, 3.96, 3.25 fold compared to control
Palayakotai R Raghavan
added a research item
We recently reported that Metadichol ® [1] brings about a three to four-fold increase in Vitamin C levels in patients without the use of Vitamin C supplementation. In this study of 6 patients who experienced a 5-12 fold increase in plasma Vitamin C levels higher than 80-100 u mol/L level which is the highest reported to date by oral supplementation at high doses of Vitamin C. Metadichol improved in these patients TSH levels, normalized High Blood pressure, fasting glucose levels, reduced eosinophil count, high triglycerides, body fat reduction and increased bone mass, normalized sodium levels, reducing high insulin levels, increased creatinine output in urine and also reducing of Red Cell Distribution width %. Metadichol thus serves as a surrogate for Vitamin C at doses of 5 mg per day as opposed to mega doses that are currently used.