Archived project

MSCA IF - PIEZOMACH - Piezoelectric Vibration Absorber for Machining Applications

Goal: The main idea of the PIEZOMACH project is to develop a fully passive nonlinear device for suppressing chatter vibrations in machine tools. These vibrations represent a major concern in industry, as they result, for instance, in waves on the machined surface. This project goes beyond the challenge of dealing with the nonlinear nature of chatter vibrations, to developing a device that can unlock the huge potential of nonlinearity to improve dynamic performance.
More specifically, the linear characteristic of the absorber will be optimized to maximize its stability properties, while its nonlinear characteristic will be designed in order to avoid dangerous bistable behaviors and guarantee robustness. This technique, successfully implemented for the suppression of aeroelastic instabilities, will be adapted to machine tool vibrations, first analytically and then experimentally, paving the way to the industrial exploitation of the obtained results. The vibration absorber will be practically realized utilizing an RLC resonant circuit coupled to the mechanical structure through a piezoelectric patch.

Date: 1 October 2016 - 30 September 2018

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
7
Reads
0 new
45

Project log

Giuseppe Habib
added 10 project references
Giuseppe Habib
added a project goal
The main idea of the PIEZOMACH project is to develop a fully passive nonlinear device for suppressing chatter vibrations in machine tools. These vibrations represent a major concern in industry, as they result, for instance, in waves on the machined surface. This project goes beyond the challenge of dealing with the nonlinear nature of chatter vibrations, to developing a device that can unlock the huge potential of nonlinearity to improve dynamic performance.
More specifically, the linear characteristic of the absorber will be optimized to maximize its stability properties, while its nonlinear characteristic will be designed in order to avoid dangerous bistable behaviors and guarantee robustness. This technique, successfully implemented for the suppression of aeroelastic instabilities, will be adapted to machine tool vibrations, first analytically and then experimentally, paving the way to the industrial exploitation of the obtained results. The vibration absorber will be practically realized utilizing an RLC resonant circuit coupled to the mechanical structure through a piezoelectric patch.