Project

Life history of North American reptiles and amphibians

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
3
Reads
0 new
9

Project log

Daniel F Hughes
added a research item
We ascertained various life-history traits from an examination of 310 museum specimens of the Rio Grande leopard frog (Lithobates berlandieri Baird, 1859) collected during 1907-2016 from Texas, USA. Lithobates berlandieri was captured during every month of the year except November, and adults were most frequently encountered during January-September with a distinct peak in May. Mean body size of adult males (69.5 mm) was smaller than that of adult females (77.5 mm), and both sexes were larger in mean body sizes than those of New Mexico populations (M = 64.4 mm; F = 73.5 mm). Females were gravid during January-September, and most gravid females were captured from late-winter to early-summer. Gonadal enlargement in males was generally high throughout January-September with no detectable seasonal increase. Feeding became widespread in both sexes during May-June shortly after a spring breeding bout. Spent females were common in July and lipid deposition increased in June/July, signaling oogenesis for breeding in the fall. From 15 gravid females, we estimated a mean clutch size of 3,107 eggs which was correlated with female body size, yet egg diameter was not related to clutch or body size. Age to metamorphosis was likely 2 to 4 months depending upon whether eggs were laid in the winter/spring or late fall. If metamorphosis occurred in May/June, the minimum size at sexual maturity in adult males (50.1 mm) could have been reached in 3-4 months and in 6-7 months for adult females (57.2 mm). Mean adult body sizes, however, may have taken 12 to 17 months to reach. A synthesis across Texas populations suggests that the breeding season extends almost continuously from the fall through the winter and spring until mid-summer and is interrupted by winter and summer peaks in seasonal temperatures.
Daniel F Hughes
added a research item
Geographically widespread species that occupy many thermal environments provide testable models for understanding the evolution of life-history responses to latitude, yet studies that draw range-wide conclusions using descriptive data from populations in the core of a species distribution can overlook meaningful inter-population variation. The phrynosomatid lizard Phrynosoma cornutum spans an extensive latitudinal distribution in North America and has been well-studied in connection with life-history evolution, yet populations occupying the most northern and coldest areas within its range were absent from previous examinations. We tested genus-wide models and challenged species-specific findings on the evolution of the life-history strategy for P. cornutum using populations at the northern edge of its geographic range and comparative material from farther south. Multivariate analyses revealed that egg dimensions decreased with clutch size, suggestive of a previously unrecognized tradeoff between egg size and egg number in this species. Interestingly, reproductive traits of females with shelled eggs did not covary with latitude, yet we found that populations at the highest latitudes typified several traits of the genus and for the species, including a model for Phrynosoma of large clutches and delayed reproduction. A significant deviation from earlier findings is that we detected latitudinal variation in clutch size. This finding, although novel, is unsurprising given the smaller body sizes from northern populations and the positive relationship between clutch size and body size. Intriguing, however, was that the significant reduction in clutch size persisted when female body size was held constant, indicating a reproductive disadvantage to living at higher latitudes. We discuss the possible selective pressures that may have resulted in the diminishing returns on reproductive output at higher latitudes. Our findings highlight the type of insights in the study of life-history evolution that can be gained across Phrynosomatidae from the inclusion of populations representing latitudinal endpoints.