Project

InvaCost: assessing the economic costs of biological invasions

Goal: Assessing the economic costs of biological invasions, for all taxa, all regions, all activity sectors, all types of economic costs, and much more!

Updates
0 new
1
Recommendations
0 new
6
Followers
0 new
178
Reads
7 new
1672

Project log

Emma J. Hudgins
added a research item
Introduction pathways play a pivotal role in the success of Invasive Alien Species (IAS)—the subset of alien species that have a negative environmental and/or socio-economic impact. Pathways refer to the fundamental processes that leads to the introduction of a species from one geographical location to another—marking the beginning of all alien species invasions. Increased knowledge of pathways is essential to help reduce the number of introductions and impacts of IAS and ultimately improve their management. Here we use the InvaCost database, a comprehensive repository on the global monetary impacts of IAS, combined with pathway data classified using the Convention on Biological Diversity (CBD) hierarchical classification and compiled from CABI Invasive Species Compendium, the Global Invasive Species Database (GISD) and the published literature to address five key points. Data were available for 478 individual IAS. For these, we found that both the total and annual average cost per species introduced through the ‘Stowaway’ (US$144.9bn; US$89.4m) and ‘Contaminant’ pathways (US$99.3bn; US$158.0m) were higher than species introduced primarily through the ‘Escape’ (US$87.4bn; US$25.4m) and ‘Release’ pathways (US$64.2bn; US$16.4m). Second, the recorded costs (both total and average) of species introduced unintentionally was higher than that from species introduced intentionally. Third, insects and mammals, respectively, accounted for the greatest proportion of the total cost of species introduced unintentionally and intentionally respectively, at least of the available records; ‘Stowaway’ had the highest recorded costs in Asia, Central America, North America and Diverse/Unspecified regions. Fourthly, the total cost of a species in a given location is not related to the year of first record of introduction, but time gaps might blur the true pattern. Finally, the total and average cost of IAS were not related to their number of introduction pathways. Although our findings are directly limited by the available data, they provide important material which can contribute to pathway priority measures, notably by complementing studies on pathways associated with ecologically harmful IAS. They also highlight the crucial need to fill the remaining data gaps—something that will be critical in prioritising limited management budgets to combat the current acceleration of species invasions.
Alok Bang
added a research item
Invasive ants are amongst the most destructive and widespread invaders across the globe; they can strongly alter invaded ecosystems and are responsible for the loss of native ant species. Several studies have reported that invasive ants can also lead to substantial economic costs. In this study, we search, describe and analyse 1342 reported costs of invasive ants compiled in the InvaCost database. Economic costs, reported since 1930 for 12 ant species in 27 countries, totalled US$ 51.93 billion, from which US$ 10.95 billion were incurred, and US$ 40.98 billion were potential costs (i.e., expected or predicted costs). More than 80% of total costs were associated with only two species, Solenopsis invicta and Wasmannia auropunctata; and two countries, the USA and Australia. Overall, damage costs amounted to 92% of the total cost, mainly impacting the agriculture, public and social welfare sectors. Management costs were primarily post-invasion management (US$ 1.79 billion), with much lower amounts dedicated to prevention (US$ 235.63 million). Besides the taxonomic bias, cost information was lacking for an average of 78% of the invaded countries. Moreover, even in countries where costs were reported, such information was available for only 56% of the invaded locations. Our synthesis suggests that the global costs of invasive ants are massive but largely biased towards developed economies, with a huge proportion of underreported costs, and thus most likely grossly underestimated. We advocate for more and improved cost reporting of invasive ants through better collaborations between managers, practitioners and researchers, a crucial basis for adequately informing future budgets and improving proactive management actions of invasive ants.
Ross N Cuthbert
added a research item
Invasive alien species (IAS) are a major driver of global biodiversity loss, hampering conservation efforts and disrupting ecosystem functions and services. While accumulating evidence documented ecological impacts of IAS across major geographic regions, habitat types and taxonomic groups, appraisals for economic costs remained relatively sparse. This has hindered effective cost-benefit analyses that inform expenditure on management interventions to prevent, control, and eradicate IAS. Terrestrial invertebrates are a particularly pervasive and damaging group of invaders, with many species compromising primary economic sectors such as forestry, agriculture and health. The present study provides synthesised quantifications of economic costs caused by invasive terrestrial invertebrates on the global scale and across a range of descriptors, using the InvaCost database. Invasive terrestrial invertebrates cost the global economy US$ 712.44 billion over the investigated period (up to 2020), considering only high reliability source reports. Overall, costs were not equally distributed geographically, with North America (73%) reporting the greatest costs, with far lower costs reported in Europe (7%), Oceania (6%), Africa (5%), Asia (3%), and South America (< 1%). These costs were mostly due to invasive insects (88%) and mostly resulted from direct resource damages and losses (75%), particularly in agriculture and forestry; relatively little (8%) was invested in management. A minority of monetary costs was directly observed (17%). Economic costs displayed an increasing trend with time, with an average annual cost of US$ 11.40 billion since 1960, but as much as US$ 165.01 billion in 2020, but reporting lags reduced costs in recent years. The massive global economic costs of invasive terrestrial invertebrates require urgent consideration and investment by policymakers and managers, in order to prevent and remediate the economic and ecological impacts of these and other IAS groups.
Alok Bang
added a research item
Biological invasions are one of the top drivers of the ongoing biodiversity crisis. An underestimated consequence of invasions is the enormity of their economic impacts. Knowledge gaps regarding economic costs produced by invasive alien species (IAS) are pervasive, particularly for emerging economies such as India—the fastest growing economy worldwide. To investigate, highlight and bridge this gap, we synthesised data on the economic costs of IAS in India. Specifically, we examine how IAS costs are distributed spatially, environmentally, sectorally, taxonomically, temporally, and across introduction pathways; and discuss how Indian IAS costs vary with socioeconomic indicators. We found that IAS have cost the Indian economy between at least US$ 127.3 billion to 182.6 billion (Indian Rupees ₹ 8.3 trillion to 11.9 trillion) over 1960–2020, and these costs have increased with time. Despite these massive recorded costs, most were not assigned to specific regions, environments, sectors, cost types and causal IAS, and these knowledge gaps are more pronounced in India than in the rest of the world. When costs were specifically assigned, maximum costs were incurred in West, South and North India, by invasive alien insects in semi-aquatic ecosystems; they were incurred mainly by the public and social welfare sector, and were associated with damages and losses rather than management expenses. Our findings indicate that the reported economic costs grossly underestimate the actual costs, especially considering the expected costs given India’s population size, gross domestic product and high numbers of IAS without reported costs. This cost analysis improves our knowledge of the negative economic impacts of biological invasions in India and the burden they can represent for its development. We hope this study motivates policymakers to address socio-ecological issues in India and launch a national biological invasion research programme, especially since economic growth will be accompanied by greater impacts of global change.
Ross N Cuthbert
added a research item
Ecological and socioeconomic impacts from biological invasions are rapidly escalating worldwide. While effective management underpins impact mitigation, such actions are often delayed, insufficient or entirely absent. Presently, management delays emanate from a lack of monetary rationale to invest at early invasion stages, which precludes effective prevention and eradication. Here, we provide such rationale by developing a conceptual model to quantify the cost of inaction, i.e., the additional expenditure due to delayed management, under varying time delays and management efficiencies. Further, we apply the model to management and damage cost data from a relatively data-rich genus (Aedes mosquitoes). Our model demonstrates that rapid management interventions following invasion drastically minimise costs. We also identify key points in time that differentiate among scenarios of timely, delayed and severely delayed management intervention. Any management action during the severely delayed phase results in substantial losses (>50% of the potential maximum loss). For Aedes spp., we estimate that the existing management delay of 55 years led to an additional total cost of approximately $ 4.57 billion (14% of the maximum cost), compared to a scenario with management action only seven years prior (< 1% of the maximum cost). Moreover, we estimate that in the absence of management action, long-term losses would have accumulated to US$ 32.31 billion, or more than seven times the observed inaction cost. These results highlight the need for more timely management of invasive alien species—either pre-invasion, or as soon as possible after detection—by demonstrating how early investments rapidly reduce long-term economic impacts.
Ross N Cuthbert
added a research item
Aim To assess spatio‐temporal and taxonomic patterns of available information on the costs of invasive freshwater bivalves, as well as to identify knowledge gaps. Location Global. Time period 1980–2020. Taxon studied Bivalvia. Methods We synthesize published global economic costs of impacts from freshwater bivalves using the InvaCost database and associated R package, explicitly considering the reliability of estimation methodologies, cost types, economic sectors and impacted regions. Results Cumulative total global costs of invasive macrofouling bivalves were $ 63.7 billion (2017 US$) across all regions and socio‐economic sectors between 1980 and 2020. Costs were heavily biased taxonomically and spatially, dominated by two families, Dreissenidae and Cyrenidae (Corbiculidae), and largely reported in North America. The greatest share of reported costs ($ 31.5 billion) did not make the distinction between damage and management. However, of those that did, damages and resource losses were one order of magnitude higher ($ 30.5 billion) than control or preventative measures ($ 1.7 billion). Moreover, although many impacted socio‐economic sectors lacked specification, the largest shares of costs were incurred by authorities and stakeholders ($ 27.7 billion, e.g., public and private sector interventions) and through impacts on public and social welfare ($ 10.1 billion, e.g., via power/drinking water plant and irrigation system damage) in North America. Average cost estimates over the entire period amounted to approximately $ 1.6 billion per year, most of which was incurred in North America. Main conclusions Our results highlight the burgeoning economic threat caused by invasive freshwater bivalves, offering a strong economic incentive to invest in preventative management such as biosecurity and rapid response eradications. Even if the damages and resource losses are severely understated because economic impacts are lacking for most invaded countries and invasive bivalve species, these impacts are substantial and likely growing.
Ross N Cuthbert
added a research item
The global increase in biological invasions is placing growing pressure on the management of ecological and economic systems. However, the effectiveness of current management expenditure is difficult to assess due to a lack of standardised measurement across spatial, taxonomic and temporal scales. Furthermore, there is no quantification of the spending difference between pre-invasion (e.g. prevention) and post-invasion (e.g. control) stages, although preventative measures are considered to be the most cost-effective. Here, we use a comprehensive database of invasive alien species economic costs (InvaCost) to synthesise and model the global management costs of biological invasions, in order to provide a better understanding of the stage at which these expenditures occur. Since 1960, reported management expenditures have totalled at least US$95.3 billion (in 2017 values), considering only highly reliable and actually observed costs-12-times less than damage costs from invasions ($1130.6 billion). Pre-invasion management spending ($2.8 billion) was over 25-times lower than post-invasion expenditure ($72.7 billion). Management costs were heavily geographically skewed towards North America (54%) and Oceania (30%). The largest shares of expenditures were directed towards invasive alien invertebrates in terrestrial environments. Spending on invasive alien species management has grown by two orders of magnitude since 1960, reaching an estimated $4.2 billion per year globally (in 2017 values) in the 2010s, but remains 1-2 orders of magnitude lower than damages. National management spending increased with incurred damage costs, with management actions delayed on average by 11 years globally following damage reporting. These management delays on the global level have caused an additional invasion cost of approximately $1.2 trillion, compared to scenarios with immediate management. Our results indicate insufficient management-particularly pre-invasion-and urge better investment to prevent future invasions and to control established alien species. Recommendations to improve reported management cost comprehensiveness, resolution and terminology are also made.
Ross N Cuthbert
added 4 research items
Despite voluminous literature identifying the impacts of invasive species, summaries of monetary costs for some taxonomic groups remain limited. Invasive alien crustaceans often have profound impacts on recipient ecosystems, but there may be great unknowns related to their economic costs. Using the InvaCost database, we quantify and analyse reported costs associated with invasive crustaceans globally across taxonomic, spatial, and temporal descriptors. Specifically, we quantify the costs of prominent aquatic crustaceans — crayfish, crabs, amphipods, and lobsters. Between 2000 and 2020, crayfish caused US$ 120.5 million in reported costs; the vast majority (99%) being attributed to representatives of Astacidae and Cambaridae. Crayfish-related costs were unevenly distributed across countries, with a strong bias towards European economies (US$ 116.4 million; mainly due to the signal crayfish in Sweden), followed by costs reported from North America and Asia. The costs were also largely predicted or extrapolated, and thus not based on empirical observations. Despite these limitations, the costs of invasive crayfish have increased considerably over the past two decades, averaging US$ 5.7 million per year. Invasive crabs have caused costs of US$ 150.2 million since 1960 and the ratios were again uneven (57% in North America and 42% in Europe). Damage-related costs dominated for both crayfish (80%) and crabs (99%), with management costs lacking or even more under-reported. Reported costs for invasive amphipods (US$ 178.8 thousand) and lobsters (US$ 44.6 thousand) were considerably lower, suggesting a lack of effort in reporting costs for these groups or effects that are largely non-monetised. Despite the well-known damage caused by invasive crustaceans, we identify data limitations that prevent a full accounting of the economic costs of these invasive groups, while highlighting the increasing costs at several scales based on the available literature. Further cost reports are needed to better assess the true magnitude of monetary costs caused by invasive aquatic crustaceans.
Biological invasions are a major component of anthropogenic environmental change, incurring substantial economic costs across all sectors of society and ecosystems. However, the economic costs of invasions have been disparately reported, lacking synthesis across taxonomic and sectorial scales. Using the newly compiled InvaCost database, we analyse reported economic damage and management costs incurred by biological invasions in New Zealand — a country renowned for its approaches to invasive species management — from 1968 to 2020. In total, US$69 billion (NZ$97 billion) is currently reported over this ~50 year period, with approximately US$9 billion of this considered highly reliable, observed ( c.f. projected) costs. Most (82%) of these observed economic costs are associated with damage, with comparatively little invested in management (18%). Reported costs are increasing over time, with damage averaging US$120 million per year and exceeding management expenditure in all decades. Where specified, most reported costs are from terrestrial plants and animals, with damages most often borne by primary industries such as agriculture and forestry. Management costs are associated more with interventions by authorities and stakeholders. However, some known ecologically ( c.f. economically) impactful invasive species are notably absent from estimated damage costs, and management costs are not reported for a number of game animals and agricultural pathogens. Given these gaps for known and potentially damaging invaders, we urge improved cost reporting at the national scale, including improving public accessibility through increased access and digitisation of records, particularly in overlooked socioeconomic sectors and habitats. This also further highlights the importance of investment in management to curtail future damages across all sectors.
The global increase in biological invasions is placing growing pressure on the management of ecological and economic systems. However, the effectiveness of current management expenditure is difficult to assess due to a lack of standardised measurement across spatial, taxonomic and temporal scales. Furthermore, there is no quantification of the spending difference between pre-invasion (e.g. prevention) and post-invasion (e.g. control) stages, although preventative measures are considered to be the most cost-effective. Here, we use a comprehensive database of invasive alien species economic costs (InvaCost) to synthesise and model the global management costs of biological invasions, in order to provide a better understanding of the stage at which these expenditures occur. Since 1960, reported management expenditures have totalled at least US$95.3 billion (in 2017 values), considering only highly reliable and actually observed costs — 12-times less than damage costs from invasions ($1,130.6 billion). Pre-invasion management spending ($2.8 billion) was over 25-times lower than post-invasion expenditure ($72.7 billion). Management costs were heavily geographically skewed towards North America (54%) and Oceania (30%). The largest shares of expenditures were directed towards invasive alien invertebrates in terrestrial environments. Spending on invasive alien species management has grown by two orders of magnitude since 1960, reaching an estimated $4.2 billion per year globally (in 2017 values) in the 2010s, but remains 1–2 orders of magnitude lower than damages. National management spending increased with incurred damage costs, with management actions delayed on average by 11 years globally following damage reporting. These management delays on the global level have caused an additional invasion cost of approximately $1.2 trillion, compared to scenarios with immediate management. Our results indicate insufficient management — particularly pre-invasion — and urge better investment to prevent future invasions and to control established alien species. Recommendations to improve reported management cost comprehensiveness, resolution and terminology are also made.
Ross N Cuthbert
added 2 research items
In addition to being a major threat to biodiversity and ecosystem functioning, biological invasions also have profound impacts on economies and human wellbeing. However, the threats posed by invasive species often do not receive adequate attention and lack targeted management. In part, this may result from different or even ambivalent perceptions of invasive species which have a dual effect for stakeholders—being simultaneously a benefit and a burden. For these species, literature that synthesizes best practice is very limited, and analyses providing a comprehensive understanding of their economics are generally lacking. This has resulted in a critical gap in our understanding of the underlying trade-offs surrounding management efforts and approaches. Here, we explore qualitative trends in the literature for invasive species with dual effects, drawing from both the recently compiled InvaCost database and international case studies. The few invasive species with dual roles in InvaCost provide evidence for a temporal increase in reporting of costs, but with benefits relatively sporadically reported alongside costs. We discuss methods, management, assessment and policy frameworks dedicated to these species, along with lessons learned, complexities and persisting knowledge gaps. Our analysis points at the need to enhance scientific understanding of those species through inter- and cross-disciplinary efforts that can help advance their management.
Invasive alien species (IAS) are a growing global ecological problem. Reports on the socioeconomic impacts of biological invasions are accumulating, but our understanding of temporal trends across regions and taxa remains scarce. Accordingly, we investigated temporal trends in the economic cost of IAS and cost-reporting literature using the InvaCost database and meta-regression modelling approaches. Overall, we found that both the cost reporting literature and monetary costs increased significantly over time at the global scale, but costs increased faster than reports. Differences in global trends suggest that cost literature has accumulated most rapidly in North America and Oceania, while monetary costs have exhibited the steepest increase in Oceania, followed by Europe, Africa and North America. Moreover, the costs for certain taxonomic groups were more prominent than others and the distribution also differed spatially, reflecting a potential lack of generality in cost-causing taxa and disparate patterns of cost reporting. With regard to global trends within the Animalia and Plantae kingdoms, costs for flatworms, mammals, flowering and vascular plants significantly increased. Our results highlight significantly increasing research interest and monetary impacts of biological invasions globally, but uncover key regional differences driven by variability in reporting of costs across countries and taxa. Our findings also suggest that regions which previously had lower research effort (e.g., Africa) exhibit rapidly increasing costs, comparable to regions historically at the forefront of invasion research. While these increases may be driven by specific countries within regions, we illustrate that even after accounting for research effort (cost reporting), costs of biological invasions are rising.
Elena Angulo
added a research item
Economic assessments for invasive alien species (IAS) are an urgent requirement for informed decision-making, coordinating and motivating the allocation of economic and human resources for the management of IAS. We searched for economic costs of IAS occurring in Spain, by using the InvaCost database and requesting data to regional governments and national authorities, which resulted in over 3,000 cost entries. Considering only robust data (i.e. excluding extrapolated, potential (not-incurred or expected) and low reliability costs), economic costs in Spain were estimated at US$ 261 million (€ 232 million) from 1997 to 2022. There was an increase from US$ 4 million per year before 2000 to US$ 15 million per year in the last years (from € 4 to 13 million). Robust data showed that most reported costs of IAS in Spain (> 90%) corresponded to management costs, while damage costs were only found for 2 out of the 174 species with reported costs. Economic costs relied mostly on regional and inter-regional administrations that spent 66% of costs in post-invasion management actions, contrary to all international guidelines, which recommend investing more in prevention. Regional administrations unequally reported costs. Moreover, 36% of the invasive species, reported to incur management costs, were not included in national or European regulations (i.e. Black Lists), suggesting the need to review these policies; besides, neighbouring regions seem to manage different groups of species. We suggest the need of a national lead agency to effectively coordinate actions, facilitate communication and collaboration amongst regional governments, national agencies and neighbouring countries. This will motivate the continuity of long-lasting management actions and the increase in efforts to report IAS costs by regional and inter-regional managers which will adequately provide information for future budgets gaining management effectiveness.
Private Profile
added a research item
Biological invasions by amphibian and reptile species (i.e. herpetofauna) are numerous and widespread and have caused severe impacts on ecosystems, the economy and human health. However, there remains no synthesised assessment of the economic costs of these invasions. Therefore, using the most comprehensive database on the economic costs of invasive alien species worldwide (InvaCost), we analyse the costs caused by invasive alien herpetofauna according to taxonomic, geographic, sectoral and temporal dimensions, as well as the types of these costs. The cost of invasive herpetofauna totaled, and they were entirely unavailable for over 94% of known invasive herpetofauna worldwide. Also, costs were positively correlated with research effort, suggesting research biases towards well-known taxa. So far, costs have been dominated by predictions and extrapolations (79%), and thus empirical observations for impact were relatively scarce. The activity sector most affected by amphibians was authorities-stakeholders through management (> 99%), while for reptiles, impact was reported mostly through damages to mixed sectors (65%). Geographically, Oceania and Paci c Islands recorded 63% of total costs, followed by Europe (35%) and North America (2%). Cost reports have generally increased over time. A greater effort in studying the costs of invasive herpetofauna is necessary for a more complete understanding of invasion impacts of these species. We emphasise the need for greater control and prevention policies concerning the spread of current and future invasive herpetofauna.
Ross N Cuthbert
added a research item
The United States has thousands of invasive species, representing a sizable, but unknown burden to the national economy. Given the potential economic repercussions of invasive species, quantifying these costs is of paramount importance both for national economies and invasion management. Here, we used a novel global database of invasion costs (InvaCost) to quantify the overall costs of invasive species in the United States across spa-tiotemporal, taxonomic, and socioeconomic scales. From 1960 to 2020, reported invasion costs totaled $4.52 trillion (USD 2017). Considering only observed, highly reliable costs, this total cost reached $1.22 trillion with an average annual cost of $19.94 billion/year. These costs increased from $2.00 billion annually between 1960 and 1969 to $21.08 billion annually between 2010 and 2020. Most costs (73%) were related to resource damages and losses ($896.22 billion), as opposed to management expenditures ($46.54 billion). Moreover, the majority of costs were reported from invaders from terrestrial habitats ($643.51 billion, 53%) and agriculture was the most impacted sector ($509.55 billion). From a taxonomic perspective, mammals ($234.71 billion) and insects ($126.42 billion) were the taxonomic groups responsible for the greatest costs. Considering the apparent rising costs of invasions, coupled with increasing numbers of invasive species and the current lack of cost information for most known invaders, our findings provide critical information for policymakers and managers.
Private Profile
added a research item
Invasive alien fishes have had pernicious ecological and economic impacts on both aquatic ecosystems and human societies. However, a comprehensive and collective assessment of their monetary costs is still lacking. In this study, we collected and reviewed reported data on the economic impacts of invasive alien fishes using InvaCost, the most comprehensive global database of invasion costs. We analysed how total (i.e. both observed and potential/predicted) and observed (i.e. empirically incurred only) costs of fish invasions are distributed geographically and temporally and assessed which socioeconomic sectors are most affected. Fish invasions have potentially caused the economic loss of at least US$37.08 billion (US2017 value) globally, from just 27 reported species. North America reported the highest costs (>85% of the total economic loss), followed by Europe, Oceania and Asia, with no costs yet reported from Africa or South America. Only 6.6% of the total reported costs were from invasive alien marine fish. The costs that were observed amounted to US$2.28 billion (6.1% of total costs), indicating that the costs of damage caused by invasive alien fishes are often extrapolated and/or difficult to quantify. Most of the observed costs were related to damage and resource losses (89%). Observed costs mainly affected public and social welfare (63%), with the remainder borne by fisheries, authorities and stakeholders through management actions, environmental, and mixed sectors. Total costs related to fish invasions have increased significantly over time, from <US$0.01 million/year in the 1960s to over US$1 billion/year in the 2000s, while observed costs have followed a similar trajectory. Despite the growing body of work on fish invasions, information on costs has been much less than expected, given the overall number of invasive alien fish species documented and the high costs of the few cases reported. Both invasions and their economic costs are increasing, exacerbating the need for improved cost reporting across socioeconomic sectors and geographic regions, for more effective invasive alien fish management.
Danish Ali Ahmed
added a research item
The rate of biological invasions is growing unprecedentedly, threatening ecological and socioeconomic systems worldwide. Quantitative understandings of invasion temporal trajectories are essential to discern current and future economic impacts of invaders, and then to inform future management strategies. Here, we examine the temporal trends of cumulative invasion costs by developing and testing a novel mathematical model with a population dynamical approach based on logistic growth. This model characterises temporal cost developments into four curve types (I–IV), each with distinct mathematical and qualitative properties, allowing for the parameterization of maximum cumulative costs, carrying capacities and growth rates. We test our model using damage cost data for eight genera ( Rattus , Aedes , Canis , Oryctolagus , Sturnus , Ceratitis , Sus and Lymantria ) extracted from the InvaCost database—which is the most up-to-date and comprehensive global compilation of economic cost estimates associated with invasive alien species. We find fundamental differences in the temporal dynamics of damage costs among genera, indicating they depend on invasion duration, species ecology and impacted sectors of economic activity. The fitted cost curves indicate a lack of broadscale support for saturation between invader density and impact, including for Canis , Oryctolagus and Lymantria , whereby costs continue to increase with no sign of saturation. For other taxa, predicted saturations may arise from data availability issues resulting from an underreporting of costs in many invaded regions. Overall, this population dynamical approach can produce cost trajectories for additional existing and emerging species, and can estimate the ecological parameters governing the linkage between population dynamics and cost dynamics.
Ross N Cuthbert
added 6 research items
Invasive alien species (IAS) are a leading driver of biodiversity loss worldwide, and have negative impacts on human societies. In most countries, available data on monetary costs of IAS are scarce, while being crucial for developing efficient management. In this study, we use available data collected from the first global assessment of economic costs of IAS (InvaCost) to quantify and describe the economic cost of inva- sions in Mexico. This description was made across a range of taxonomic, sectoral and temporal variables, and allowed us to identify knowledge gaps within these areas. Overall, costs of invasions in Mexico were estimated at US$ 5.33 billion (i.e., 109 ) ($MXN 100.84 billion) during the period from 1992 to 2019. Biological invasion costs were split relatively evenly between aquatic (US$ 1.16 billion; $MXN 21.95 bil- lion) and terrestrial (US$ 1.17 billion; $MXN 22.14 billion) invaders, but semi-aquatic taxa dominated (US$ 2.99 billion; $MXN 56.57 billion), with costs from damages to resources four times higher than those from management of IAS (US$ 4.29 billion vs. US$ 1.04 billion; $MXN 81.17 billion vs $MXN 19.68 billion). The agriculture sector incurred the highest costs (US$ 1.01 billion; $MXN 19.1 billion), followed by fisheries (US$ 517.24 million; $MXN 9.79 billion), whilst most other costs simultaneously impacted mixed or unspecified sectors. When defined, costs to Mexican natural protected areas were mostly associated with management actions in terrestrial environments, and were incurred through official authorities via monitoring, control or eradication. On natural protected islands, mainly mammals were managed (i.e. rodents, cats and goats), to a total of US$ 3.99 million, while feral cows, fishes and plants were mostly managed in protected mainland areas, amounting to US$ 1.11 million in total. Pterygopli- chthys sp. and Eichhornia crassipes caused the greatest reported costs in unprotected aquatic ecosystems in Mexico, and Bemisia tabaci to terrestrial systems. Although reported damages from invasions appeared to be fluctuating through time in Mexico, management spending has been increasing. These estimates, albeit conservative, underline the monetary pressure that invasions put on the Mexican economy, calling for urgent actions alongside comprehensive cost reporting in national states such as Mexico.
Terrestrial ecosystems, owing to the presence of key socio-economic sectors such as agriculture and forestry, may be particularly economically affected by biological invasions. The present study uses a subset of the recently developed database of global economic costs of biological invasions (InvaCost) to quantify the monetary costs of biological invasions in Russia, the largest country in the world that spans two continents. From 2007 up to 2019, invasions costed the Russian economy at least US$ 51.52 billion (RUB 1.38 trillion, n = 94 cost entries), with the vast majority of these costs based on predictions or extrapolations (US$ 50.86 billion; n = 87) and, therefore, not empirically observed. Most cost entries exhibited low geographic resolution, being split between European and Asian parts of Russia (US$ 44.17 billion; n = 72). Just US$ 7.35 billion (n = 22) was attributed to the European part solely and none to the Asian part. Invasion costs were documented for 72 species and particularly insects (37 species). The empirically-observed costs, summing up to US$ 660 million (n = 7), were reported only for four species: two insects Agrilus planipennis Fairmaire and Cydalima perspectalis (Walker) and two plants Ambrosia artemisiifolia L. and Heracleum sosnowskyi Manden. The vast majority of economic costs were related to resource damages and economic losses, with very little reported expenditures on managing invasions in terrestrial ecosystems. In turn, agriculture (US$ 37.42 billion; n = 68) and forestry (US$ 14.0 billion; n = 20) were the most impacted sectors. Overall, we report burgeoning economic costs of invasions in Russia and identify major knowledge gaps, for example, concerning specific habitat types (i.e. aquatic) and management expenditures, as well as for numerous known invasive taxa with no reported economic costs (i.e. vertebrates). Given this massive, largely underestimated economic burden of invasions in Russia, our work is a call for improved reporting of costs nationally and internationally.
Private Profile
added a research item
The legacy of deliberate and accidental introductions of invasive alien species to Australia has had a hefty economic toll, yet quantifying the magnitude of the costs associated with direct loss and damage, as well as for management interventions, remains elusive. This is because the reliability of cost estimates and under-sampling have not been determined. We provide the first detailed analysis of the reported costs associated with invasive species to the Australian economy since the 1960s, based on the recently published InvaCost database and supplementary information, for a total of 2078 unique cost entries. Since the 1960s, Australia has spent or incurred losses totalling at least US$298.58 billion (2017 value) or AU$389.59 billion (2017 average exchange rate) from invasive species. However, this is an underestimate given that costs rise as the number of estimates increases following a power law. There was an average 1.8–6.3-fold increase in the total costs per decade since the 1970s to the present, producing estimated costs of US$6.09–57.91 billion year-1 (all costs combined) or US$225.31 million–6.84 billion year-1 (observed, highly reliable costs only). Costs arising from plant species were the highest among kingdoms (US$151.68 billion), although most of the costs were not attributable to single species. Of the identified weedy species, the costliest were annual ryegrass (Lolium rigidum), parthenium (Parthenium hysterophorus) and ragwort (Senecio jacobaea). The four costliest classes were mammals (US$48.63 billion), insects (US$11.95 billion), eudicots (US$4.10 billion) and monocots (US$1.92 billion). The three costliest species were all animals – cats (Felis catus), rabbits (Oryctolagus cuniculus) and red imported fire ants (Solenopsis invicta). Each State/Territory had a different suite of major costs by species, but with most (3–62%) costs derived from one to three species per political unit. Most (61%) of the reported costs applied to multiple environments and 73% of the total pertained to direct damage or loss compared to management costs only, with both of these findings reflecting the availability of data. Rising incursions of invasive species will continue to have substantial costs for the Australian economy, but with better investment, standardised assessments and reporting and coordinated interventions (including eradications), some of these costs could be substantially reduced.
Romina Daiana Fernandez
added a research item
Invasive alien species (IAS) affect natural ecosystems and services fundamental to human well-being, human health and economies. However, the economic costs associated with IAS have been less studied than other impacts. This information can be particularly important for developing countries such as Argentina, where monetary resources for invasion management are scarce and economic costs are more impactful. The present study provides the first analysis of the economic cost of IAS in Argentina at the national level, using the InvaCost database (expanded with new data sources in Spanish), the first global compilation of the reported economic costs of invasions. We analyzed the temporal development of invasions costs, distinguishing costs according to the method reliability (i.e. reproducibility of the estimation methodology) and describing the economic costs of invasions by invaded environment, cost type, activity sector affected and taxonomic group of IAS. The total economic cost of IAS in Argentina between 1995 and 2019 was estimated at US$ 6,908 million. All costs were incurred and 93% were highly reliable. The recorded costs were mainly related to terrestrial environments and the agricultural sector, with lack of costs in other sectors, making it difficult to discuss the actual distribution of invasion costs in Argentina. Nevertheless, the reported costs of IAS in this country are very high and yet likely much underestimated due to important data gaps and biases in the literature. Considering that Argentina has an underdeveloped economy, costs associated with biological invasions should be taken into consideration for preventing invasions, and to achieve a more effective use of available resources.
Private Profile
added 4 research items
Biological invasions continue to threaten the stability of ecosystems and societies that are dependent on their services. Whilst the ecological impacts of invasive alien species (IAS) have been widely reported in recent decades, there remains a paucity of information concerning their economic impacts. Europe has strong trade and transport links with the rest of the world, facilitating hundreds of IAS incursions, and largely centralised decision-making frameworks. The present study is the first comprehensive and detailed effort that quantifies the costs of IAS collectively across European countries and examines temporal trends in these data. In addition, the distributions of costs across countries, socioeconomic sectors and taxonomic groups are examined, as are socio-economic correlates of management and damage costs. Total costs of IAS in Europe summed to US$140.20 billion (or €116.61 billion) between 1960 and 2020, with the majority (60%) being damage-related and impacting multiple sectors. Costs were also geographically widespread but dominated by impacts in large western and central European countries, i.e. the UK, Spain, France, and Germany. Human population size, land area, GDP, and tourism were significant predictors of invasion costs, with management costs additionally predicted by numbers of introduced species, research effort and trade. Temporally, invasion costs have increased exponentially through time, with up to US$23.58 billion (€19.64 billion) in 2013, and US$139.56 billion (€116.24 billion) in impacts extrapolated in 2020. Importantly, although these costs are substantial, there remain knowledge gaps on several geographic and taxonomic scales, indicating that these costs are severely underestimated. We, thus, urge increased and improved cost reporting for economic impacts of IAS and coordinated international action to prevent further spread and mitigate impacts of IAS populations.
The impacts of invasive alien species are well-known and are categorised as a leading contributor to biodiversity loss globally. However, relatively little is known about the monetary costs incurred from invasions on national economies, hampering management responses. In this study, we used published data to describe the economic cost of invasions in Southeast Asia, with a focus on Singapore – a biodiversity-rich, tropical island city state with small size, high human density and high trade volume, three factors likely to increase invasions. In this country, as well as in others in Southeast Asia, cost data were scarce, with recorded costs available for only a small fraction of the species known to be invasive. Yet, the overall available economic costs to Singapore were estimated to be ~ US$ 1.72 billion in total since 1975 (after accounting for inflation), which is approximately one tenth of the total cost recorded in all of Southeast Asia (US$ 16.9 billion). These costs, in Singapore and Southeast Asia, were mostly linked to insects in the family Culicidae (principally Aedes spp.) and associated with damage, resource loss, healthcare and control-related spending. Projections for 11 additional species known to be invasive in Singapore, but with recorded costs only from abroad, amounted to an additional US$ 893.13 million, showing the potential huge gap between recorded and actual costs (cost records remain missing for over 90% of invasive species). No costs within the database for Singapore – or for other Southeast Asian countries – were exclusively associated with proactive management, highlighting that a shortage of reporting on the costs of invasions is mirrored by a lack of investment in management. Moreover, invasion cost entries in Singapore were under-reported relative to import levels, but total costs exceeded expectations, based on land area and population size, and to a greater extent than in other Southeast Asian countries. Therefore, the evaluation and reporting of economic costs of invasions need to be improved in this region to provide efficient data-based support for mitigation and management of their impacts.
Invasive alien species are a well-known and pervasive threat to global biodiversity and human well-being. Despite substantial impacts of invasive alien species, quantitative syntheses of monetary costs incurred from invasions in national economies are often missing. As a consequence, adequate resource allocation for management responses to invasions has been inhibited, because cost-benefit analysis of management actions cannot be derived. To determine the economic cost of invasions in Germany, a Central European country with the 4th largest GDP in the world, we analysed published data collected from the first global assessment of economic costs of invasive alien species. Overall, economic costs were estimated at US$ 9.8 billion between 1960 and 2020, including US$ 8.9 billion in potential costs. The potential costs were mostly linked to extrapolated costs of the American bullfrog Lithobates catesbeianus, the black cherry Prunus serotina and two mammals: the muskrat Ondatra zibethicus and the American mink Neovison vison. Observed costs were driven by a broad range of taxa and mostly associated with control-related spending and resource damages or losses. We identified a considerable increase in costs relative to previous estimates and through time. Importantly, of the 2,249 alien and 181 invasive species reported in Germany, only 28 species had recorded economic costs. Therefore, total quantifications of invasive species costs here should be seen as very conservative. Our findings highlight a distinct lack of information in the openly-accessible literature and governmental sources on invasion costs at the national level, masking the highly-probable existence of much greater costs of invasions in Germany. In addition, given that invasion rates are increasing, economic costs are expected to further increase. The evaluation and reporting of economic costs need to be improved in order to deliver a basis for effective mitigation and management of invasions on national and international economies.
Ross N Cuthbert
added a research item
Although the high costs of invasion are frequently cited and are a key motivation for environmental management and policy, synthesised data on invasion costs are scarce. Here, we quantify and examine the monetary costs of biological invasions in the United Kingdom (UK) using a global synthesis of reported invasion costs. Invasive alien species have cost the UK economy between US$6.9 billion and $17.6 billion (£5.4 – £13.7 billion) in reported losses and expenses since 1976. Most costs were reported for the entire UK or Great Britain (97%); country-scale cost reporting for the UK's four constituent countries was scarce. Reports of animal invasions were the costliest ($4.7 billion), then plant ($1.3 billion) and fungal ($206.7 million) invasions. Reported damage costs (i.e. excluding management costs) were higher in terrestrial ($4.8 billion) than aquatic or semi-aquatic environments ($29.8 million), and primarily impacted agriculture ($4.2 billion). Invaders with earlier introduction years accrued significantly higher total invasion costs. Invasion costs have been increasing rapidly since 1976, and have cost the UK economy $157.1 million (£122.1 million) per annum, on average. Published information on specific economic costs included only 42 of 520 invaders reported in the UK and was generally available only for the most intensively studied taxa, with just four species contributing 90% of species-specific costs. Given that many of the invasive species lacking cost data are actively managed and have well-recognised impacts, this suggests that cost information is incomplete and that totals presented here are vast underestimates owing to knowledge gaps. Financial expenditure on managing invasions is a fraction (37%) of the costs incurred through damage from invaders; greater investments in UK invasive species research and management are, therefore, urgently required.
Ross N Cuthbert
added a research item
The United States has thousands of invasive species, representing a sizable, but unknown burden to the national economy. Given the potential economic repercussions of invasive species, quantifying these costs is of paramount importance both for national economies and invasion management. Here, we used a novel global database of invasion costs (InvaCost) to quantify the overall costs of invasive species in the United States across spatiotemporal, taxonomic, and socioeconomic scales. From 1960 to 2020, reported invasion costs totaled $4.52 trillion (USD 2017). Considering only observed, highly reliable costs, this total cost reached $1.22 trillion with an average annual cost of $19.94 billion/year. These costs increased from $2.00 billion annually between 1960-1969 to $21.08 billion annually between 2010-2020. Most costs (73%) were related to resource damages and losses ($896.22 billion), as opposed to management expenditures ($46.54 billion). Moreover, the majority of costs were reported from invaders from terrestrial habitats ($643.51 billion, 53%) and agriculture was the most impacted sector ($509.55 billion). From a taxonomic perspective, mammals ($234.71 billion) and insects ($126.42 billion) were the taxonomic groups responsible for the greatest costs. Considering the apparent rising costs of invasions, coupled with increasing numbers of invasive species and the current lack of cost information for most known invaders, our findings provide critical information for policymakers and managers.
Ross N Cuthbert
added a research item
Biological invasions are increasing worldwide , damaging ecosystems and socioeconomic sectors. Two decades ago, the ''100 of the world's worst'' invasive alien species list was established by the IUCN to improve communications , identifying particularly damaging 'flagship' invaders globally (hereafter, worst). Whilst this list has bolstered invader awareness , whether worst species are especially economically damaging and how they compare to other invaders (hereafter, other) remain unknown. Here, we quantify invasion costs using the most comprehensive global database compiling them (InvaCost). We compare these costs between worst and other species against sectorial, taxonomic and regional descriptors, and examine temporal cost trends. Only 60 of the 100 worst species had invasion costs considered as highly reliable and actually observed estimates (median: US$ 43 million). On average, these costs were significantly higher than the 463 other invasive species recorded in InvaCost (median: US$ 0.53 million), although some other species had higher costs than most worst species. Damages to the environment from the worst species dominated, whereas other species largely impacted agriculture. Disproportionately highest worst species costs were incurred in North America, whilst costs were more evenly distributed for other species; animal invasions were always costliest. Proportional management expenditures were low for the other species, and surprisingly, over twice as low for the worst species.
Private Profile
added a research item
Introduction pathways play a pivotal role in the success of Invasive Alien Species (IAS) – the subset of alien species that have a negative environmental and/or socio-economic impact. Pathways refer to the fundamental mechanism that leads to the introduction of a species outside of its native range – marking the beginning of all alien species invasions. Increased knowledge of pathways is essential to help reduce the flow and impacts of IAS and ultimately improve their management. Here we use the InvaCost database, a comprehensive repository on the global monetary impacts of invasive alien species, combined with the CBD hierarchical classification of introduction pathways to address four key questions: ( i ) Are particular IAS introduction pathways economically impactful? ( ii ) How are costs taxonomically and spatially distributed across pathways? ( iii ) Are there differences in costs between species introduced intentionally and unintentionally? and ( iv ) is there a relationship between the number of possible introduction pathways of IAS and their costs? We found first that both the total and average cost of species introduced through ‘Stowaways’ (US$144.9bn; US$89.4m) and ‘Contaminants’ pathways (US$99.3bn; US$158.0m) were more costly than species introduced primarily through ‘Escape’ (US$87.4bn; US$25.4m) and ‘Release’ (US$64.2bn; US$16.4m). Second, insects drove the costs of unintentional introductions whilst mammals drove the costs of intentional introductions; ‘Stowaways’ had the highest costs in Asia, Central America, North America and Diverse/Unspecified regions, whilst Antarctic-Subantarctic and Oceania incurred the greatest costs from species introduced through ‘Release’. Third, the cost of species introduced unintentionally is more than double the cost of species introduced intentionally ($192bn vs. $90bn). Equally, species introduced unintentionally cost more on average than species introduced intentionally in terms of damage, management, and mixed costs. Finally, the total and average cost of IAS was not related to their number of introduction pathways. Our findings provide important material for the targeting of priority pathways - something that will be critical in prioritising limited management budgets to combat the current acceleration of species invasions.
Ross N Cuthbert
added a research item
Biological invasions are one of the top drivers of the ongoing biodiversity crisis. An underestimated consequence of invasions is the enormity of their economic impacts. Knowledge gaps regarding economic costs produced by invasive alien species (IAS) are pervasive, particularly for emerging economies such as India — the fastest growing economy worldwide. To bridge this gap, we synthesised data on economic costs of IAS in India. Specifically, we examine how IAS costs are distributed spatially, environmentally, sectorally, taxonomically, temporally and across introduction pathways; and discuss globally how IAS costs vary with socioeconomic indicators. We found that IAS have cost the Indian economy between at least US$ 127.3 billion to 182.6 billion (Indian Rupees ₹ 8.3 trillion to 11.9 trillion) over 1960–2020, and these costs have increased with time. Most recorded costs were not assigned to specific regions, environments, sectors, cost types and causal IAS. When costs were specifically assigned, maximum costs were incurred in west, south and north India, by invasive alien insects in semi-aquatic ecosystems, incurred mainly by the public and social welfare sector, and were associated with damages and losses rather than management expenses. Our findings indicate that the reported economic costs grossly underestimate the actual costs, especially when considering the expected costs given India's population size and gross domestic product (GDP). This cost analysis improves our knowledge of the negative economic impacts associated with biological invasions in India and the burden they can represent for its development. We hope that this study motivates policymakers to address socio-ecological issues, especially since economic growth will be accompanied by greater impacts of global change.
Franck Courchamp
added 2 research items
Rodents are a notorious group of invaders worldwide. Their invasions have substantially impacted native ecosystems, local infrastructure, and human health and well-being. However, a lack of synthesized estimation of their economic impacts hampers effective management interventions at relevant scales. Here, we used the InvaCost database – the most up-to-date and comprehensive synthesis of reported monetary invasion costs – to assess the economic costs of invasive rodents globally. Our conservative analysis showed that reported costs of rodent invasions reached at least US$ 3.28 billion between 1930 and 2018, and were significantly increasing through time. The highest species-specific costs were reported from Ondatra zibethicus , Rattus norvegicus and Castor canadensis , with over 90% of the total costs damage-related, principally impacting agriculture, and predominantly reported in Asia (65%) and Europe (20%). Although minimal compared to damages, the majority of management investments were made on islands, with post-invasion spending always dominant. Importantly, managements expenditures to prevent rodent invasions were entirely absent from mainland areas. However, only approximately one quarter of the 48 known invasive alien rodents had reported costs, highlighting clear taxonomic biases. Obvious cost reporting gaps were also evidenced across different areas, sectors and contexts, suggesting a great underestimation of the costs incurred by invasive rodents globally. Greater and integrative research effort on the direct and indirect costs of rodent invaders – particularly the distinction between native rodent pests and invasive rodents’ impacts, or from indirect impacts on human health – would be crucial for bridging these gaps. Ultimately, this would support proactive and sustainable management strategies.
Ross N Cuthbert
added a research item
Much research effort has been invested in understanding ecological impacts of invasive alien species (IAS) across ecosystems and taxonomic groups, but empirical studies about economic effects lack synthesis. Using a comprehensive global database, we determine patterns and trends in economic costs of aquatic IAS by examining: (i) the distribution of these costs across taxa, geographic regions and cost types; (ii) the temporal dynamics of global costs; and (iii) knowledge gaps, especially compared to terrestrial IAS. Based on the costs recorded from the existing literature, the global cost of aquatic IAS conservatively summed to US$345 billion, with the majority attributed to invertebrates (62%), followed by vertebrates (28%), then plants (6%). The largest costs were reported in North America (48%) and Asia (13%), and were principally a result of resource damages (74%); only 6% of recorded costs were from management. The magnitude and number of reported costs were highest in the United States of America and for semi-aquatic taxa. Many countries and known aquatic alien species had no reported costs, especially in Africa and Asia. Accordingly, a network analysis revealed limited connectivity among countries, indicating disparate cost reporting. Aquatic IAS costs have increased in recent decades by several orders of magnitude, reaching at least US$23 billion in 2020. Costs are likely considerably underrepresented compared to terrestrial IAS; only 5% of reported costs were from aquatic species, despite 26% of known invaders being aquatic. Additionally, only 1% of aquatic invasion costs were from marine species. Costs of aquatic IAS are thus substantial, but likely underreported. Costs have increased over time and are expected to continue rising with future invasions. We urge increased and improved cost reporting by managers, practitioners and researchers to reduce knowledge gaps. Few costs are proactive investments; increased management spending is urgently needed to prevent and limit current and future aquatic IAS damages
Private Profile
added a research item
Many countries lack the economic capacity to effectively manage invasive species. Yet, the direct socioeconomic impact generally much outweighs the expected costs of prevention. A distinct lack of monetary cost quantification associated with key invasive species groups impedes decision-making, and thus resource allocation, by policy makers to address invasions. Here, we synthesize published global economic costs of impacts for one key taxonomic group – freshwater bivalves – whilst explicitly considering the reliability of estimation methodologies, cost types, economic sectors and impacted regions. Although several species from this group are notorious widespread invaders, estimations of their economic costs have remained relatively sparse. Cumulative total global costs of invasive macrofouling bivalves were US$ 63.6 billion (2017 USD) across all regions and socioeconomic sectors between 1980 and 2020. Costs were heavily biased taxonomically and spatially, dominated by two families, Dreissenidae and Cyrenidae (Corbiculidae), and largely constrained to North America. The largest share of reported costs ($ 30.6 billion) did not make the distinction between damage and management. However, of those that did, damages and resource losses were one order of magnitude higher ($ 30.3 billion) than control or preventative measures ($ 1.7 billion). Moreover, although many impacted socioeconomic sectors lacked specification, the largest shares of costs were incurred through authorities and stakeholders ($ 26.3 billion, e.g. public and private sector interventions) and by public and social welfare ($ 11.6 billion, e.g. via power/drinking water plant and irrigation system damage). Average cost estimates over the entire period amounted to approximately $ 1.6 billion per year, most of which was incurred in North America. We thus present novel cost quantifications that offer a strong economic incentive to invest in preventative management of invasive bivalves in freshwaters. However, these costs are severely underestimated because well-documented economic impacts are lacking for most invaded countries and most invasive bivalve species.
Elena Angulo
added a research item
Invasive ants are amongst the most destructive and widespread invaders across the globe; they can strongly alter invaded ecosystems and are responsible for the displacement of numerous native ant species. Several studies have reported that invasive ants can lead to substantial economic costs. In this study, we search, describe and analyze 1,621 reported costs of invasive ants using the InvaCost database. Economic costs, reported since 1930 for 12 ant species in 27 countries, totaled US$ 56.92 billion. The largest costs were associated with two species, Solenopsis invicta and Wasmannia auropunctata (US$ 36.91 and 19.91 billion respectively); and two countries, USA and Australia (US$ 28.62 and 27.94 billion respectively). Potential costs (i.e., expected or predicted costs) constituted the vast majority of the reported costs (80.4%). Overall, damage costs amounted to 96.3% of the total cost, impacting mostly the agriculture, public and social welfare sectors, whereas management costs primarily resulted from post-invasion management (US$ 1.78 billion), with much lower amounts dedicated to prevention (US$ 235.62 million). Beside the taxonomic bias, cost information lacked for ~ 77% of the invaded countries per species, and the geographic coverage of costs was only ~ 18% within invaded countries with costs reported. Our synthesis suggests that the global costs of invasive ants are massive but largely underreported, and thus most likely grossly underestimated. We advocate for more and improved cost reporting of invasive ants through better collaborations between managers, practitioners and researchers, a crucial basis for adequately informing future budgets and improving proactive management actions of invasive ants.
Private Profile
added a research item
Despite voluminous literature identifying invasive species impacts, understandings of monetary costs remain limited. Recently, profound impacts have been attributed to invasive crustaceans, but associated monetary costs lack synthesis. Here, we analyse globally reported costs of invasive freshwater craysh across taxonomic, spatial and temporal descriptors. Moreover, we compare their cost magnitude to other invasive crustaceans — crabs, amphipods and lobsters. Between 2000 and 2020, craysh caused US$ 1.28 billion in reported costs; the vast majority (95%) attributed to Astacidae (principally the signal craysh Pacifastacus leniusculus) and the remainder to Cambaridae. According to reports, craysh costs mostly impacted European economies (US$ 1.23 billion), followed by costs reported for North America and Asia. Despite well-known damages caused by invasive craysh, costs were unreported elsewhere, highlighting knowledge gaps and challenges in cost quantications. Invasive craysh costs increased exponentially in the last two decades, averaging at US$ 61 million per-annum. Invasive crabs caused costs of similar magnitude (US$ 1.25 billion; US$ 53 million per-annum) but were mostly conned to North America (95%). Damage-related costs dominated for both craysh (83%) and crabs (99%), with management spending lacking. Reported economic impacts from amphipods (US$ 178.8 thousand) and lobsters (US$ 44.6 thousand) were considerably lower. We identify burgeoning economic costs from these invasive groups yet highlight pervasive knowledge gaps at multiple scales. Further cost reporting is required to better-ascertain the true scale of monetary costs caused by invasive aquatic crustaceans.
Danish Ali Ahmed
added a research item
The rate of biological invasions is growing unprecedentedly, threatening ecological and socioeconomic systems worldwide. Quantitative understandings of invasion temporal trajectories are essential to discern current and future economic impacts of invaders, and then to inform future management strategies. Here, we examine the temporal trends of cumulative invasion costs by developing and testing a novel mathematical model with a population dynamical approach based on logistic growth. This model characterises temporal cost developments into four curve types (I - IV), each with distinct mathematical and qualitative properties, allowing for the parameterization of maximum cumulative costs, carrying capacities and growth rates. We test our model using damage cost data for eight genera (Rattus, Aedes, Canis, Oryctolagus, Sturnus, Ceratitis, Sus and Lymantria) extracted from the InvaCost database – which is the most up-to-date and comprehensive global compilation of economic cost estimates associated with invasive alien species. We find fundamental differences in the temporal dynamics of damage costs among genera, indicating they depend on invasion duration, species ecology and impacted sectors of economic activity. The fitted cost curves indicate a lack of broadscale support for saturation between invader density and impact, including for Canis, Oryctolagus and Lymantria, whereby costs continue to increase with no sign of saturation. For other taxa, predicted saturations may arise from data availability issues resulting from an underreporting of costs in many invaded regions. Overall, this population dynamical approach can produce cost trajectories for additional existing and emerging species, and can estimate the ecological parameters governing the linkage between population dynamics and cost dynamics.
Ross N Cuthbert
added 4 research items
-- THE FULL, FINAL PAPER IS NOW PUBLISHED AND OPEN ACCESS: https://link.springer.com/article/10.1007/s10530-021-02568-7 -- Biological invasions are increasing worldwide, damaging ecosystems and socioeconomic sectors. Two decades ago, the “100 of the world’s worst” invasive alien species list was established by the IUCN to improve communications, identifying particularly damaging ‘flagship’ invaders globally (hereafter, worst ). Whilst this list has bolstered invader awareness, whether worst species are especially economically damaging and how they compare to other invaders (hereafter, other ) remain unknown. Here, we quantify invasion costs using the most comprehensive global database compiling them (InvaCost). We compare these costs between worst and other species against sectorial, taxonomic and regional descriptors, and examine temporal cost trends. Only 60 of the 100 worst species had invasion costs considered as highly reliable and actually observed estimates (median: US$ 43 million). On average, these costs were significantly higher than the 463 other invasive species recorded in InvaCost (median: US$ 0.53 million), although some other species had higher costs than most worst species. Damages to the environment from the worst species dominated, whereas other species largely impacted agriculture. Disproportionately highest worst species costs were incurred in North America, whilst costs were more evenly distributed for other species; animal invasions were always costliest. Proportional management expenditures were low for the other species, and surprisingly, over twice as low for the worst species. Temporally, costs increased more for the worst than other taxa; however, management spending has remained very low for both groups. Nonetheless, since 40 species had no robust and/or reported costs, the “true” cost of “some of the world’s worst ” 100 invasive species still remains unknown.
Biological invasions are one of the main threats to biodiversity within protected areas (PAs) worldwide. Meanwhile, the resilience of PAs along with their capacity to mitigate impacts from invasions remains largely unknown. Filling this knowledge gap is therefore critical for informing policy responses and optimally allocating resources invested in prevention and control strategies. Here we use the InvaCost database to address this gap from three perspectives: (i) characterizing the total cost of invasive alien species (IAS) in PAs; (ii) examining differences in mean observed costs of IAS between PAs and non-PAs; and (iii) evaluating factors affecting mean observed costs of IAS in PAs. Our results show that reported economic costs of IAS in PAs amounted to US$ 22.13 billion between 1976 and 2020, of which US$ 802.47 million were observed costs (incurred) and US$ 21.18 billion were potential costs (expected). The highest observed total costs were reported for Africa and South America; mainly caused by mammals, plants and insects; and predominantly impacted the finances of government agencies. Most of the observed total costs were reported for management (69%) versus damage (27%), however, the vast majority of management costs were reported for post-invasion actions (US$ 453 million; focused on control and eradication). PAs incurred on average higher costs than non-PAs, however, this was dependent on the environment and the continent. When analyzing costs of IAS within PAs, observed mean costs significantly differed with the environment (higher in terrestrial environments), continent (higher in Pacific islands), taxon (higher for vertebrates and invertebrates than in plants) and the human development index (developed countries incur higher costs). Managers of selected PAs surveyed acknowledged IAS as the most threatening factor, concurred on the necessity of reporting costs in PAs, and pointed to insufficient budget allocation for pre-invasion actions. Our findings highlight the need for a deeper understanding of the economic costs caused by invasions across PAs, direct driving factors and management challenges.
Invasive alien fishes have caused pernicious ecological impacts on aquatic ecosystems. However, there has not been a global appraisal of associated economic impacts. Here, we compiled reported economic impacts of invasive alien fishes using the most comprehensive global database of invasion costs (InvaCost). We analyze how fish invasion costs are distributed geographically and temporally, as well as which socioeconomic sectors are most impacted. Fish invasions have caused the economic loss of at least US$32.8 billion globally (2017 value), from only 26 reported species (of 128 known invasive alien fish species). North America had the highest costs (> 99%), followed by Europe and Asia, with no costs reported in Africa, Oceania nor South America. Very few costs from invasive fish in the marine realm were reported (0.1%). Most costs are related to resource damages and losses (97%), with relatively little spent on management; mainly impacting the fisheries sector (93%). However, when only considering empirically observed costs (without predictions), most costs were incurred by authorities and stakeholders through management, indicating that damage costs from invasive fishes are often extrapolated and/or difficult to quantify. Fish invasion costs increase markedly over time, from US$0.57 billion/year in the 1980s to US$1 billion/year in the 2000s. Fish invasions have been relatively well studied; however, economic costs have been lower than expected based on overall numbers of alien species. Accordingly, although costs are increasing, improved reporting is required to better understand how fish invasion costs are distributed across time, space and economic sectors.
Emma J. Hudgins
added a research item
Ecological and socioeconomic impacts from biological invasions are rapidly escalating worldwide. While effective management underpins impact mitigation, such actions are often delayed, insufficient or entirely absent. Presently, management delays emanate from a lack of monetary rationale to invest at early invasion stages, which precludes effective prevention and eradication. Here, we provide such rationale by developing a conceptual model to quantify the cost of inaction, i.e., the additional expenditure due to delayed management, under varying time delays and management efficiencies. Further, we apply the model to management and damage cost data from a relatively data-rich genus (Aedes mosquitoes). Our model demonstrates that rapid management interventions following invasion drastically minimise costs. We also identify key points in time that differentiate among scenarios of timely, delayed and severely delayed management intervention. Any management action during the severely delayed phase results in substantial losses (>50% of the potential maximum loss). For Aedes spp., we estimate that the existing management delay of 55 years led to an additional total cost of approximately $ 4.57 billion (14% of the maximum cost), compared to a scenario with management action only 7 years prior (<1% of the maximum cost). Moreover, we estimate that in the absence of management action, long-term losses would have accumulated to US$ 32.31 billion, or more than 7 times the observed inaction cost. These results highlight the need for more timely management of invasive alien species—either pre-invasion, or as soon as possible after detection—by demonstrating how early investments rapidly reduce long-term economic impacts.
Franck Courchamp
added 2 research items
We contend that the exclusive focus on the English language in scientific research might hinder effective communication between scientists and practitioners or policy makers whose mother tongue is non-English. This barrier in scientific knowledge and data transfer likely leads to significant knowledge gaps and may create biases when providing global patterns in many fields of science. To demonstrate this, we compiled data on the global economic costs of invasive alien species reported in 15 non-English languages. We compared it with equivalent data from English documents (i.e., the InvaCost database, the most up-to-date repository of invasion costs globally). The comparison of both databases (~7500 entries in total) revealed that non-English sources: (i) capture a greater amount of data than English sources alone (2500 vs. 2396 cost entries respectively); (ii) add 249 invasive species and 15 countries to those reported by English literature, and (iii) increase the global cost estimate of invasions by 16.6% (i.e., US$ 214 billion added to 1.288 trillion estimated from the English database). Additionally, 2712 cost entries — not directly comparable to the English database — were directly obtained from practitioners, revealing the value of communication between scientists and practitioners. Moreover, we demonstrated how gaps caused by overlooking non-English data resulted in significant biases in the distribution of costs across space, taxonomic groups, types of cost, and impacted sectors. Specifically, costs from Europe, at the local scale, and particularly pertaining to management, were largely under-represented in the English database. Thus, combining scientific data from English and non-English sources proves fundamental and enhances data completeness. Considering non-English sources helps alleviate biases in understanding invasion costs at a global scale. Finally, it also holds strong potential for improving management performance, coordination among experts (scientists and practitioners), and collaborative actions across countries. Note: non-English versions of the abstract and figures are provided in Appendix S5 in 12 languages.
Biological invasions are responsible for substantial biodiversity declines as well as high economic losses to society and monetary expenditures associated with the management of these invasions1,2. The InvaCost database has enabled the generation of a reliable, comprehensive, standardized and easily updatable synthesis of the monetary costs of biological invasions worldwide3. Here we found that the total reported costs of invasions reached a minimum of US$1.288 trillion (2017 US dollars) over the past few decades (1970–2017), with an annual mean cost of US$26.8 billion. Moreover, we estimate that the annual mean cost could reach US$162.7 billion in 2017. These costs remain strongly underestimated and do not show any sign of slowing down, exhibiting a consistent threefold increase per decade. We show that the documented costs are widely distributed and have strong gaps at regional and taxonomic scales, with damage costs being an order of magnitude higher than management expenditures. Research approaches that document the costs of biological invasions need to be further improved. Nonetheless, our findings call for the implementation of consistent management actions and international policy agreements that aim to reduce the burden of invasive alien species. Analysis of the InvaCost database shows that the costs of biological invasions have markedly increased between 1970 and 2017 and show no sign of slowing down, highlighting the importance of evidence-based and cost-effective management actions.
Franck Courchamp
added 3 research items
Biological invasions can cause substantial economic losses and expenses for management, as well as harm biodiversity, ecosystem services and human well-being. A comprehensive assessment of the economic costs of invasions is a challenging but essential prerequisite for efficient and sustainable management of invasive alien species. Indeed, these costs were shown to be inherently heterogeneous and complex to determine, and substantial knowledge gaps prevent a full understanding of their nature and distribution. Hence, the development of a still-missing global, standard framework for assessing and deciphering invasion costs is essential to identify effective management approaches and optimise legislation. The recent advent of the InvaCost database – the first comprehensive and harmonised compilation of the economic costs associated with biological invasions worldwide – offers unique opportunities to investigate these complex and diverse costs at different scales. Insights provided by such a dataset are likely to be greatest when a diverse range of experience and expertise are combined. For this purpose, an international and multidisciplinary workshop was held from 12 th to 15 th November 2019 near Paris (France) to launch several project papers based on the data available in InvaCost. Here, we highlight how the innovative research arising from this workshop offers a major step forward in invasion science. We collectively identified five core research opportunities that InvaCost can help to address: (i) decipher how existing costs of invasions are actually distributed in human society; (ii) bridge taxonomic and geographic gaps identified in the costs currently estimated; (iii) harmonise terminology and reporting of costs through a consensual and interdisciplinary framework; (iv) develop innovative methodological approaches to deal with cost estimations and assessments; and (v) provide cost-based information and tools for applied management of invasions. Moreover, we attribute part of the success of the workshop to its consideration of diversity, equity and societal engagement, which increased research efficiency, creativity and productivity. This workshop provides a strong foundation for substantially advancing our knowledge of invasion impacts, fosters the establishment of a dynamic collaborative network on the topic of invasion economics, and highlights new key features for future scientific meetings.
Since its accidental introduction in 2003 in France, the yellow-legged Asian hornet Vespa velutina nigrithorax is rapidly spreading through France and Europe. Economic assessments regarding the costs of invasive species often reveal important costs from required control measures or damages. Despite the rapid invasion of the Asian yellow-legged hornet in Europe and potential damage to apiculture and pollination services, the costs of its invasion have not been evaluated yet. Here we aimed at studying the costs arising from the Asian yellow-legged hornet invasion by providing the first estimate of the control cost. Today, the invasion of the Asian yellow-legged hornet is mostly controlled by nest destruction. We estimated that nest destruction cost €23 million between 2006 and 2015 in France. The yearly cost is increasing as the species keeps spreading and could reach €11.9 million in France, €9.0 million in Italy and €8.6 million in the United Kingdom if the species fills its current climatically suitable distribution. Although more work will be needed to estimate the cost of the Asian yellow-legged hornet on apiculture and pollination services, they likely exceed the current costs of control with nest destruction. It could thus be worth increasing control efforts by aiming at destroying a higher percentage of nests.
In an era of profound biodiversity crisis, invasion costs, invader impacts, and human agency should not be dismissed.
Jean-Michel Salles
added a research item
The Asian tiger mosquito is an invasive species, present in France for two decades, which is responsible for significant nuisances and can transmit serious diseases. We use DCE and CVM to value the reduction of these nuisances and health risks, and to estimate WTP for prevention and control measures. Our results show that populations are firstly sensitive to the risk of contracting mosquito-borne diseases. In addition, the current communication efforts of the public authorities on the issue are not deemed satisfactory and the population is willing to pay to improve them. Econometric analysis highlights the existence of three categories of people: a group mainly averse to health risk, another more sensitive to the nuisance, and a third indifferent between them. WTP are mainly influenced by actual expenditure on repellents and insecticides, place of residence and individual income.
Franck Courchamp
added a research item
Biological invasions are responsible for tremendous impacts globally, including huge economic losses and management expenditures. Efficiently mitigating this major driver of global change requires the improvement of public awareness and policy regarding its substantial impacts on our socio-ecosystems. One option to contribute to this overall objective is to inform people on the economic costs linked to these impacts; however, until now, a reliable synthesis of invasion costs has never been produced at a global scale. Here, we introduce InvaCost as the most up-to-date, comprehensive, harmonised and robust compilation and description of economic cost estimates associated with biological invasions worldwide. We have developed a systematic, standardised methodology to collect information from peer-reviewed articles and grey literature, while ensuring data validity and method repeatability for further transparent inputs. Our manuscript presents the methodology and tools used to build and populate this living and publicly available database. InvaCost provides an essential basis (2419 cost estimates currently compiled) for worldwide research, management efforts and, ultimately, for data-driven and evidence-based policymaking.
Jean-Michel Salles
added a research item
The Asian tiger mosquito is an invasive species, present in France for two decades, which is responsible for significant nuisances and can transmit serious diseases. We use DCE and CVM to value the reduction of these nuisances and health risks, and to estimate WTP for prevention and control measures. Our results show that populations are firstly sensitive to the risk of contracting mosquito-born diseases. In addition, the current communication efforts are deemed unsatisfactory and the population is willing to pay to improve them. Econometric analysis highlights the existence of three categories of people: a group mainly averse to health risk, another more sensitive to the nuisance, and a third indifferent between them. WTP are mainly influenced by actual expenditure on repellents and insecticides, place of residence and individual income.
Private Profile
added an update
The Invacost Database construction has been on-going for ~4 years, and the original goal, i.e. to estimate the documented global economic cost of invasions, is now achieved. Given the wealth of data, the InvaCost researchers have no time to exploit it all alone. This situation provided the backdrop for the InvaCost Workshop project: gather experts of various aspects of biological invasions to further exploit the database, to ensure a better and more efficient valorisation of the InvaCost database.
 
Franck Courchamp
added a project goal
Assessing the economic costs of biological invasions, for all taxa, all regions, all activity sectors, all types of economic costs, and much more!