Project

Integrating earthquake early warnings into organisational resilience

Goal: Our goal is to provide some new and impact -oriented insight on the connection between the technical and social components of earthquake early warning systems.We will investigate which measures could be needed to increase the organisational resilience of local community stakeholders and the private sector (e.g. business and infrastructure providers), deriving new guidelines for improving emergency preparedness.The Project has been supported by theBA/Leverhulme Small Research Grants SRG 2019 Round

Date: 1 September 2019

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
5
Reads
0 new
59

Project log

Gianluca Pescaroli
added a research item
Every year, natural hazards affect millions of people around the world, causing significant economic and life losses. The rapid progress of technology and advances in understanding of the highly complex physical phenomena related to various natural hazards have promoted the development of new disaster-mitigation tools, such as earthquake early warning (EEW) systems. However, there is a general lack of integration between the multi- and cross-disciplinary elements of EEW, limiting its effectiveness and applications for end users. This paper reviews the current state-of-the-art in EEW, exploring both the technical components (i.e., seismological and engineering) as well as the socio-organizational components (i.e., social science, policy, and management) of EEW systems. This includes a discussion of specific evidence from case studies of Italy, United States’ West Coast, Japan, and Mexico, where EEW systems have reached varying levels of maturity. Our aim is to highlight necessary improvements for increasing the effectiveness of the technical aspects of EEW in terms of their implications on operational, political/legal, social, behavioral, and organizational drivers. Our analysis suggests open areas for research, associated with: 1) the information that needs to be included in EEW alerts to implement successful mitigation actions at both individual and organizational levels; 2) the need for response training to the community by official bodies, such as civil protection; 3) existing gaps in the attribution of accountability and development of liability policies involving EEW implementation; 4) the potential for EEW to increase seismic resilience of critical infrastructure and lifelines; 5) the need for strong organizational links with first responders and official EEW bodies; and 6) the lack of engineering-related (i.e., risk and resilience) metrics currently used to support decision making related to the triggering of alerts by various end users.
Gianluca Pescaroli
added a research item
Likert scales are a common methodological tool for data collection used in quantitative or mixed-method approaches in multiple domains. They are often employed in surveys or questionnaires, for benchmarking answers in the fields of disaster risk reduction, business continuity management, and organizational resilience. However, both scholars and practitioners may lack a simple scale of reference to assure consistency across disciplinary fields. This article introduces a simple-to-use rating tool that can be used for benchmarking responses in questionnaires, for example, for assessing disaster risk reduction, gaps in operational capacity, and organizational resilience. We aim, in particular, to support applications in contexts in which the target groups, due to cultural, social, or political reasons, may be unsuitable for in-depth analyses that use, for example, scales from 1 to 7 or from 1 to 10. This methodology is derived from the needs emerged in our recent fieldwork on interdisciplinary projects and from dialogue with the stakeholders involved. The output is a replicable scale from 0 to 3 presented in a table that includes category labels with qualitative attributes and descriptive equivalents to be used in the formulation of model answers. These include examples of levels of resilience, capacity, and gaps. They are connected to other tools that could be used for in-depth analysis. The advantage of our Likert scale-based response model is that it can be applied in a wide variety of disciplines, from social science to engineering.
Gianluca Pescaroli
added a project goal
Our goal is to provide some new and impact -oriented insight on the connection between the technical and social components of earthquake early warning systems.We will investigate which measures could be needed to increase the organisational resilience of local community stakeholders and the private sector (e.g. business and infrastructure providers), deriving new guidelines for improving emergency preparedness.The Project has been supported by theBA/Leverhulme Small Research Grants SRG 2019 Round