Project

Hybrid Provision of Energy based on Reliability and Resiliency by Integration of Dc Equipment (HYPERRIDE)

Goal: The project HYPERRIDE contributes to the field implementation of DC and hybrid ACDC grids. Starting with the definition of most relevant fields of application for DC grids (local microgrids, grid enforcement to overcome congestions, coupling of AC grid sections, etc.), the enabling technologies will be specified in detail on different levels. Starting from the system perspective, guidelines for grid planning and operation are developed. To optimize invest for the use case dependent use of assets available sizing tools are adapted for the field of DC grids. DC circuit breakers are key technologies for grid protection needed to overcome the main concerns related to these infrastructures. Therefore, HYPERRIDE will raise the TRL of the most promising approaches currently available with a main focus on MVDC breakers. To enable grid automation DC sensors are developed further to provide field ready devices to create data for optimal grid automation. Automation algorithms will be created, validated in a test platform and transferred towards demonstration. This also involves concepts and solutions for cyber security and fault detection. In case of grid faults necessary solutions are developed to prevent cascading effects. For fault prevention databases are created to trigger preventive measures. With demonstrations in three countries (Aachen/Germany, Lausanne/Switzerland, Terni/Italy) the project will showcase relevant and above-mentioned enabling technologies within a wide range of use cases. Benefits of the solutions will be evaluated, especially the integration potential of renewables with respect to conventional AC grids. Finally, business models are created for the products, services and applications in HYPERRIDE. Consequently, HYPERRIDE will actively identify and provide solutions to overcome barriers for a successful roll-out of new infrastructure concepts throughout Europe.

More details are provided at https://hyperride.eu!

Date: 1 October 2020 - 30 September 2024

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
13
Reads
2 new
140

Project log

Alberto Dognini
added a research item
In modern distribution grids, the access to the growing amount of data from various sources, the execution of complex algorithms on-demand, and the control of sparse actuators require on-demand scalability to support fluctuating workloads. Cloud computing technologies represent a viable solution for these requirements. To ensure that data can be exchanged and shared efficiently, as well as the full achievement of the cloud computing benefits to support the advanced analytic and mining required in smart grids, applications can be empowered with semantic information integration. This paper adopts the semantic web into a cloud-based platform to analyse power distribution grids data and apply a service restoration application to re-energize loads after an electrical fault. The exemplary implementation of the demo is powered by FIWARE, which is based on open-source and customizable building blocks for future internet applications and services, and the SARGON ontology for the energy domain. The tests are deployed by integrating the semantic information, based on the IEC 61850 data model, in the cloud-based service restoration application and interfacing the field devices of the distribution grids. The platform performances, measured as network latency and computation time, ensures the feasibility of the proposed solution, constituting a reference for the next deployments of smart energy platforms.
Thomas I. Strasser
added a project goal
The project HYPERRIDE contributes to the field implementation of DC and hybrid ACDC grids. Starting with the definition of most relevant fields of application for DC grids (local microgrids, grid enforcement to overcome congestions, coupling of AC grid sections, etc.), the enabling technologies will be specified in detail on different levels. Starting from the system perspective, guidelines for grid planning and operation are developed. To optimize invest for the use case dependent use of assets available sizing tools are adapted for the field of DC grids. DC circuit breakers are key technologies for grid protection needed to overcome the main concerns related to these infrastructures. Therefore, HYPERRIDE will raise the TRL of the most promising approaches currently available with a main focus on MVDC breakers. To enable grid automation DC sensors are developed further to provide field ready devices to create data for optimal grid automation. Automation algorithms will be created, validated in a test platform and transferred towards demonstration. This also involves concepts and solutions for cyber security and fault detection. In case of grid faults necessary solutions are developed to prevent cascading effects. For fault prevention databases are created to trigger preventive measures. With demonstrations in three countries (Aachen/Germany, Lausanne/Switzerland, Terni/Italy) the project will showcase relevant and above-mentioned enabling technologies within a wide range of use cases. Benefits of the solutions will be evaluated, especially the integration potential of renewables with respect to conventional AC grids. Finally, business models are created for the products, services and applications in HYPERRIDE. Consequently, HYPERRIDE will actively identify and provide solutions to overcome barriers for a successful roll-out of new infrastructure concepts throughout Europe.
More details are provided at https://hyperride.eu!