Project

Environment and heart disease

Goal: The primary aim of this project is to define Environment status changes influence on occurrence and development of cardiovascular diseases. The secondary aim is to define the most hazardous parameters and suggest a possible approach to that impact reduction.

Date: 1 December 2016

Updates
0 new
1
Recommendations
0 new
0
Followers
0 new
14
Reads
2 new
196

Project log

Greta Žiubrytė
added a project goal
The primary aim of this project is to define Environment status changes influence on occurrence and development of cardiovascular diseases. The secondary aim is to define the most hazardous parameters and suggest a possible approach to that impact reduction.
 
Highly recommended project
 
Greta Žiubrytė
added 2 research items
Objectives: Acute coronary syndrome as an acute oxygenated blood deprivation to the heart muscle due to atherosclerotic plaque rupture in the coronary artery followed by thrombosis is possibly associated with changes in the Earth’s local time varying magnetic field as they strongly influence hormonal and other regulatory systems’ activity. This study analyses the correlation between prevalence of the acute coronary syndrome and the changes in the local time varying aspects of the magnetic field. Methods: Seven-hundred patients admitted to Cardiology Department of Hospital of Lithuanian University of Health Sciences Kaunas Clinics within 2016 due to acute coronary syndrome were retrospectively included into the study. The number of cases per week was compared with the weekly changes of the local Earth magnetic field. The one-year period was divided into two periods: the first-half of the year (weeks 1 to 26) and the second-half of the year (weeks 27 to 52) and more detailed analyses were performed accordingly to the significance of the left main artery lesion. Mean power of local magnetic field fluctuations in Lithuania, measured in pT2 in five different frequency ranges where overlaps between the Schumann resonance and EEG frequency ranges (named as SDelta (0-3.5 Hz), STheta (3.5-7 Hz), SAlpha (7-15 Hz), SBeta (15-32 Hz) and SGamma (32-66 Hz) to distinguish them from the EEG bands). Results: Statistically significant weak and moderate correlations between weekly prevalence of acute coronary syndrome admissions and the magnetic field intensities changes were found. Higher intensities in the SBeta and SGamma ranges were associated with a higher number of admissions throughout the year in females and the SGamma range was associated with higher number of admission only during the second-half of the year in males. A higher intensity magnetic field in SDelta, STheta, SAlpha and SBeta ranges was associated with a higher admissions number due to left main artery lesions in males, while a higher intensity in the SGamma range was associated with higher number of admissions due to left main artery lesions in females through the year. Conclusion: Significant correlation between acute coronary syndrome and changes in the local Earth time varying magnetic field intensities was found. Some frequency ranges are associated with an episode of an acute coronary syndrome. Left main artery lesions significantly correlated with magnetic field changes in most of the frequency ranges in males while only one of the frequency ranges in females.
Objectives: Atrial fibrillation is the most frequent cardiac arrhythmia affecting over 3 percent and appears to be increasing in general population. In addition to widely discussed such risk factor as obesity, arterial hypertension, electrolytes disbalances and dysfunction of thyroid, there is more and more evidence of human heath interactions with environment parameters such as humidity, temperature, the lunar and the solar activity. Atrial fibrillation, a disorder of heart conductive system, in several studies have been indicated as affected by local Earth magnetic field changes. The study was aimed to analyse possible correlations between the power in the local Earth time-varying magnetic field and admission due to atrial fibrillation. Methods: Two-hundred-fifty-one patients diagnosed with acute atrial fibrillation and treated in Department of Cardiology of Hospital of Lithuanian University of Health Sciences Kaunas Clinics during year of 2016 were retrospectively included into the study. Weekly prevalence of acute atrial fibrillation was compared with weekly summarised changes in the local Earth magnetic field strength. One-year was divided into two time periods according to week number: the first period included weeks from 1 to 26 and the second period included weeks from 27 to 52. Results: Analyses have shown from weak to moderate significant correlations. Tendencies towards higher power magnetic field in low frequently ranges to be associated with higher admission rates were noticeable throughout all analysed periods. Atrial fibrillation concomitant with arterial hypertension was indicated as combination increasing severity of correlation coefficient. Conclusion: Significant correlations between acute atrial fibrillation and the local Earth time varying magnetic field changes were found. Increased magnetic field in low frequency ranges are associated with episodes of acute atrial fibrillation. Arterial hypertension is significantly associated with higher admission due to atrial fibrillation rate under low frequency local Earth magnetic field range. Keywords: atrial fibrillation, geomagnetic field, Earth’s magnetic field, magnetic field, cardiology, arrhythmias, cardiac arrhythmia.
Greta Žiubrytė
added an update
Cardiovascular disease is one of leading cause of death worldwide affecting more than half general population. Despite many studies focused on pathogenesis of cardiovascular diseases some aspects remain unclear. Additionally, several interesting studies highlighting associations between heart disease and Environment parameters have been published recently and encouraged us to analyse it deeper. Aim of this project is to define Environment parameters changes influence on occurrence of cardiovascular diseases.