Project

DYNAMIC

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
3
Reads
0 new
7

Project log

Felix Beierle
added a research item
While existing social networking services tend to connect people who know each other, people show a desire to also connect to yet unknown people in physical proximity. Existing research shows that people tend to connect to similar people. Utilizing technology in order to stimulate human interaction between strangers, we consider the scenario of two strangers meeting. On the example of similarity in musical taste, we develop a solution for the problem of similarity estimation in proximity-based mobile social networks. We show that a single exchange of a probabilistic data structure between two devices can closely estimate the similarity of two users - without the need to contact a third-party server.We introduce metrics for fast and space-efficient approximation of the Dice coefficient of two multisets - based on the comparison of two Counting Bloom Filters or two Count-Min Sketches. Our analysis shows that utilizing a single hash function minimizes the error when comparing these probabilistic data structures. The size that should be chosen for the data structure depends on the expected average number of unique input elements. Using real user data, we show that a Counting Bloom Filter with a single hash function and a length of 128 is sufficient to accurately estimate the similarity between two multisets representing the musical tastes of two users. Our approach is generalizable for any other similarity estimation of frequencies represented as multisets.
Felix Beierle
added a research item
We present the Android app TYDR (Track Your Daily Routine) which tracks smartphone sensor and usage data and utilizes standardized psychometric personality questionnaires. With the app, we aim at collecting data for researching correlations between the tracked smartphone data and the user's personality in order to predict personality from smartphone data. In this paper, we highlight our approaches in addressing the challenges in developing such an app. We optimize the tracking of sensor data by assessing the trade-off of size of data and battery consumption and granularity of the stored information. Our user interface is designed to incentivize users to install the app and fill out questionnaires. TYDR processes and visualizes the tracked sensor and usage data as well as the results of the personality questionnaires. When developing an app that will be used in psychological studies, requirements posed by ethics commissions / institutional review boards and data protection officials have to be met. We detail our approaches concerning those requirements regarding the anonymized storing of user data, informing the users about the data collection, and enabling an opt-out option. We present our process for anonymized data storing while still being able to identify individual users who successfully completed a psychological study with the app.