Project
ChinStrAP: Changes in Stratification at the Antarctic Peninsula
Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
18
Reads
0 new
121
Project log
Enhanced vertical velocities associated with submesoscale motions may rapidly modify mixed layer depths and increase exchange between the mixed layer and the ocean interior. These dynamics are of particular importance in the Southern Ocean, where the ventilation of many density classes occurs. Here we present results from an observational field program in southern Drake Passage, a region preconditioned for submesoscale instability owing to its strong mesoscale eddy field, persistent fronts, strong down-front winds, and weak vertical stratification. Two gliders sampled from December 2014 through March 2015 upstream and downstream of the Shackleton Fracture Zone (SFZ). The acquired time series of mixed layer depths and buoyancy gradients enabled calculations of potential vorticity and classifications of submesoscale instabilities. The regions flanking the SFZ displayed remarkably different characteristics despite similar surface forcing. Mixed layer depths were nearly twice as deep, and horizontal buoyancy gradients were larger downstream of the SFZ. Upstream of the SFZ, submesoscale variability was confined to the edges of topographically steered fronts, whereas downstream these motions were more broadly distributed. Comparisons to a one-dimensional (1D) mixing model demonstrate the role of submesoscale instabilities in generating mixed layer variance. Numerical output from a submesoscale-resolving simulation indicates that submesoscale instabilities are crucial for correctly reproducing upper-ocean stratification. These results show that bathymetry can play a key role in generating dynamically distinct submesoscale characteristics over short spatial scales and that submesoscale motions can be locally active during summer months.
The dense water outflow from the Antarctic continental shelf is closely associated with the strength and position of the Antarctic Slope Front. This study explores the short-term and spatial variability of the Antarctic Slope Front system and the mechanisms that regulate cross-slope exchange using highly temporally and spatially resolved measurements from three ocean gliders deployed in 2012. The 22 sections along the eastern Antarctic Peninsula and west of the South Orkney Islands are grouped regionally and composited by isobaths. There is consistency in the front position around the Powell Basin, varying mostly between the 500- and 800-m isobaths. In most of the study area the flow is bottom intensified. The along-slope transport of the Antarctic Slope Current (upper 1000 m) varies between 0.2 and 5.9 Sv (1 Sv ≡ 10^6 m^3 s^(−1)) and does not exhibit a regional pattern. The magnitude of the velocity field shows substantial variability, up to twice its mean value. Higher eddy kinetic energy (0.003 m^2 s^(−2)) is observed in sections with dense water, possibly because of baroclinic instabilities in the bottom layer. Distributions of potential vorticity show an increase toward the shelf along isopycnals and also in the dense water layer. Glider sections located west of the South Orkney Islands indicate a northward direction of the flow associated with the Weddell Front, which differs from previous estimates of the mean circulation. This study provides some of the first observational confirmation of the high-frequency variability associated with an active eddy field that has been suggested by recent numerical simulations in this region.
The ocean’s global overturning circulation regulates the transport and storage of heat, carbon and nutrients. Upwelling across the Southern Ocean’s Antarctic Circumpolar Current and into the mixed layer, coupled to water mass modification by surface buoyancy forcing, has been highlighted as a key process in the closure of the overturning circulation. Here, using twelve high-resolution hydrographic sections in southern Drake Passage, collected with autonomous ocean gliders, we show that Circumpolar Deep Water originating from the North Atlantic, known as Lower Circumpolar Deep Water, intersects sloping topography in narrow and strong boundary currents. Observations of strong lateral buoyancy gradients, enhanced bottom turbulence, thick bottom mixed layers and modified water masses are consistent with growing evidence that topographically generated submesoscale flows over continental slopes enhance near-bottom mixing, and that cross-density upwelling occurs preferentially over sloping topography. Interactions between narrow frontal currents and topography occur elsewhere along the path of the Antarctic Circumpolar Current, which leads us to propose that such interactions contribute significantly to the closure of the overturning in the Southern Ocean.
[1] Within Drake Passage, the southern flank of the Antarctic Circumpolar Current (ACC) hosts the ventilation of deep water, the injection of Antarctic shelf waters and interactions between westward and eastward boundary currents. This exchange is explored through the trajectories of forty surface drifters released in January 2012 in the northwestern Weddell Sea. The drifters detail Lagrangian transport pathways between the eastern Antarctic Peninsula and sites of elevated chlorophyll in the Scotia Sea. ACC frontal currents, in particular the Southern ACC Front, act as dynamical transport barriers to the drifters and influence surface chlorophyll distributions, indicating that ACC fronts partition Weddell source waters in the Scotia Sea. Interannual fluctuations in surface chlorophyll in the south Scotia Sea and the northern Weddell Sea covary. This suggests that Scotia Sea ecosystem dynamics are linked to water properties injected from the tip of the Antarctic Peninsula and respond to Weddell Gyre circulation changes.
Along various stretches of the Antarctic margins, dense Antarctic Bottom Water (AABW) escapes its formation sites and descends the continental slope. This export necessarily raises the isopycnals associated with lighter density classes over the continental slope, resulting in density surfaces that connect the near-freezing waters of the continental shelf to the much warmer circumpolar deep water (CDW) at middepth offshore. In this article, an eddy-resolving process model is used to explore the possibility that AABW export enhances shoreward heat transport by creating a pathway for CDW to access the continental shelf without doing any work against buoyancy forces. In the absence of a net alongshore pressure gradient, the shoreward CDW transport is effected entirely by mesoscale and submesoscale eddy transfer. Eddies are generated partly by instabilities at the pycnocline, sourcing their energy from the alongshore wind stress, but primarily by instabilities at the CDW-AABW interface, sourcing their energy from buoyancy loss on the continental shelf. This combination of processes induces a vertical convergence of eddy kinetic energy and alongshore momentum into the middepth CDW layer, sustaining a local maximum in the eddy kinetic energy over the slope and balancing the Coriolis force associated with the shoreward CDW transport. The resulting slope turbulence self-organizes into a series of alternating along-slope jets with strongly asymmetrical contributions to the slope energy and momentum budgets. Cross-shore variations in the potential vorticity gradient cause the jets to drift continuously offshore, suggesting that fronts observed in regions of AABW down-slope flow may in fact be transient features.
Recent observations suggest that the export of Antarctic Bottom Water (AABW) from the Weddell Sea has a seasonal cycle in its temperature and salinity that is correlated with annual wind stress variations. This variability has been attributed to annual vertical excursions of the isopycnals in the Weddell Gyre, modifying the water properties at the depth of the Orkney Passage. Recent studies attribute these variations to locally wind-driven barotropic dynamics in the northern Weddell Sea boundary current. This paper explores an alternative mechanism in which the isopycnals respond directly to surface Ekman pumping, which is coupled to rapidly responding mesoscale eddy buoyancy fluxes near the gyre boundary. A conceptual model of the interface that separates Weddell Sea Deep Water from Circumpolar Deep Water is described in which the bounding isopycnal responds to a seasonal oscillation in the surface wind stress. Different parameterizations of the mesoscale eddy diffusivity are tested. The model accurately predicts the observed phases of the temperature and salinity variability in relationship to the surface wind stress. The model, despite its heavy idealization, also accounts for more than 50% of the observed oscillation amplitude, which depends on the strength of the seasonal wind variability and the parameterized eddy diffusivity. These results highlight the importance of mesoscale eddies in modulating the export of AABW in narrow boundary layers around the Antarctic margins.