Archived project

Chemical defence in the wood tiger moth

Goal: To characterise the chemical defenses of the wood tiger moth, and their variation both within and between populations.

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
10
Reads
0 new
87

Project log

Bibiana Rojas
added a research item
Allocation to different components of defence has been suggested as an explanation for the existence of multiple aposematic morphs in a single population. We tested whether there are trade-offs between warning colouration and chemical defence or whether these have an additive effect when combined, using blue tits (Cyanistes caeruleus) as predators and the polymorphic wood tiger moth (Arctia plantaginis) as prey. We used artificial edible models (with and without the moths’ defensive fluids) with paper wings whose colour and pattern properties matched those of real moths. When the models were presented sans defensive fluids or when the fluids were presented without colour cues, we detected no differences in initial avoidance between the two morphs. However, when the colour and chemical cues were combined, differences emerged. White wings elicited higher latency to approach regardless of the defensive fluids applied on them. After approach, however, the defensive fluids of both morphs presented on moth models elicited higher latency to attack than a water control, hinting at a repellent odour. Fluids of white moths rendered lower amounts of prey eaten regardless of wing colour, while yellow moths’ fluids provoked the highest occurrence of beak wiping behaviour. Our findings highlight the importance of accounting for interactive effects between different signal modalities, as these can create patterns not detectable when examined in isolation. Understanding these interactions is vital to determine how different components of multimodal warning displays provide protection at different stages of a predation event and, potentially, how multiple morphs can co-occur in a population. Significance statement There are many things that can stop a predator attacking a prey such as looking scary or smelling bad, but if a predator does take a bite, tasting bad can make the difference between life and death for the prey. When combined with bright conspicuous colours, both repellent odours and deterrent tastes (i.e. chemical defences) can help predators learn to avoid unprofitable prey. However, it is unclear whether it is really the sum of these visual and chemical signals that most effectively deters predators or whether one is more important than the other. Examining the effects of warning colour and chemical defence in white and yellow wood tiger moths on wild-caught birds, we show that neither aspect of the moths’ defence in isolation is as effective for predator deterrence as the sum of both.
Lindstedt Carita
added a research item
To predict evolutionary responses of warning signals under selection, we need to determine the inheritance pattern of the signals, and how they are genetically correlated with other traits contributing to fitness. Furthermore, protective coloration often undergoes remarkable changes within an individual's lifecycle, requiring us to quantify the genetic constraints of adaptive coloration across all the relevant life stages. Based on a 12 generation pedigree with > 11 000 individuals of the wood tiger moth (Arctia plantaginis), we show that high primary defense as a larva (large warning signal) results in weaker defenses as adult (less efficient warning color), due to the negative genetic correlation between the efficacy of larval and adult warning coloration. However, production of effective warning coloration as a larva, did not incur any life-history costs and was positively genetically correlated with reproductive output. These results provide novel insights into the evolutionary constraints on protective coloration in animals, and explain the maintenance of variation in the signal expression despite the strong directional selection by predators. By analyzing the genetic and environmental effects on warning signal and life-history traits in all relevant life stages, we can accurately determine the mechanisms shaping the evolutionary responses of phenotypic traits under different selection environments. This article is protected by copyright. All rights reserved.
Bibiana Rojas
added a research item
Many animals protect themselves from predation with chemicals, both self-made or sequestered from their diet. The potential drivers of the diversity of these chemicals have been long studied, but our knowledge of these chemicals and their acquisition mode is heavily based on specialist herbivores that sequester their defenses. The wood tiger moth (Arctia plantaginis, Linnaeus, 1758) is a well-studied aposematic species, but the nature of its chemical defenses has not been fully described. Here, we report the presence of two methoxypyrazines, 2-sec-butyl-3-methoxypyrazine and 2-isobutyl-3-methoxypyrazine, in the moths' defensive secretions. By raising larvae on an artificial diet, we confirm, for the first time, that their defensive compounds are produced de novo rather than sequestered from their diet. Pyrazines are known for their defensive function in invertebrates due to their distinctive odor, inducing aversion and facilitating predator learning. While their synthesis has been suspected, it has never previously been experimentally confirmed. Our results highlight the importance of considering de novo synthesis, in addition to sequestration, when studying the defensive capabilities of insects and other invertebrates.
Bibiana Rojas
added a research item
Animals have evolved different defensive strategies to survive predation, among which chemical defences are particularly widespread and diverse. Here we investigate the function of chemical defence diversity, hypothesizing that such diversity has evolved as a response to multiple enemies. The aposematic wood tiger moth (Arctia plantaginis) displays conspicuous hindwing coloration and secretes distinct defensive fluids from its thoracic glands and abdomen.We presented the two defensive fluids from laboratoryreared moths to two biologically relevant predators, birds and ants, and measured their reaction in controlled bioassays (no information on colour was provided). We found that defensive fluids are target-specific: thoracic fluids, and particularly 2-sec-butyl-3-methoxypyrazine, which they contain, deterred birds, but caused no aversive response in ants. By contrast, abdominal fluids were particularly deterrent to ants, while birds did not find them repellent. Our study, to our knowledge, is the first to show evidence of a single species producing separate chemical defences targeted to different predator types, highlighting the importance of taking into account complex predator communities in studies on the evolution of prey defence diversity.
Emily Burdfield-Steel
added a project goal
To characterise the chemical defenses of the wood tiger moth, and their variation both within and between populations.