Project

COST Action CA17134: Optical synergies for spatiotemporal sensing of scalable ecophysiological traits

Goal: The COST Action SENSECO brings together scientists working in the domain of optical Earth Observation (EO) measurements of vegetated ecosystems at various spatial and temporal scales. The main aim of SENSECO is to ensure that the practices of EO measurements for ecophysiology are compatible at various scales, enabling synergistic multi-sensor use and transferability to guarantee the knowledge exchange on scaling methods in a European context.

SENSECO is structured into four working groups:
[WG1] Scaling gap
[WG2] Temporal gap
[WG3] Sensor synergies
[WG4] Data quality

For more information, updates and useful links, please visit our website:
http://www.senseco.eu/

Get involved ! Become a SENSECO Member !

To join SENSECO follow simple instructions provided at our website:
https://www.senseco.eu/join-us/how-to-join/

We hope to see you at one of our meetings !

Date: 24 October 2018 - 23 October 2022

Updates
0 new
2
Recommendations
0 new
3
Followers
0 new
68
Reads
4 new
355

Project log

Laura Mihai
added an update
Dear Colleagues,
This Special Issue is linked to the COST Action "Optical synergies for spatiotemporal SENsing of Scalable ECOphysiological traits" (SENSECO) WG4 activities, and its purpose is to collect all procedures that could assist in preparation of achieving “FRM4FLEX”-like status for products of the local, regional and global vegetation photosynthetic activity.
The remote sensing community is invited to submit their works related to any methodological procedures that could be used to facilitate future validation campaigns for satellite missions (FLEX, Sentinel) having the investigation of terrestrial vegetation behavior as a goal. Any works on topics including, but not limited to the following, are welcome:
  • Novel vegetation-oriented spectroradiometer development and improvement, including their calibration and characterization;
  • Best practice for traceable laboratory characterization, calibration and validation of optical sensors used in field measurements for vegetation photosynthetic activity monitoring;
  • Comparisons including calibration sources, laboratory and in situ-based vegetation sensors measurements;
  • SI traceability and end-to-end uncertainty budgets—from calibration to field measurements;
  • Best practice to achieve high-quality field measurements;
  • Measurements from permanently deployed sites and their data quality monitoring;
  • Methods showing how data from multiple sensors can be combined to provide a correct overview of vegetation photosynthetic activity at local, regional or global scale.
Dr. Laura Mihai Dr. Aga Bialek Dr. Alasdair MacArthur Guest Editors
 
Private Profile
Private Profile
Dear Laura Mihai May I know in which journal this special issue is in call ?
 
Jochem Verrelst
added a research item
In preparation for new-generation imaging spectrometer missions and the accompanying unprecedented inflow of hyperspectral data, optimized models are needed to generate vegetation traits routinely. Hybrid models, combining radiative transfer models with machine learning algorithms, are preferred, however, dealing with spectral collinearity imposes an additional challenge. In this study, we analyzed two spectral dimensionality reduction methods: principal component analysis (PCA) and band ranking (BR), embedded in a hybrid workflow for the retrieval of specific leaf area (SLA), leaf area index (LAI), canopy water content (CWC), canopy chlorophyll content (CCC), the fraction of absorbed photosynthetic active radiation (FAPAR), and fractional vegetation cover (FVC). The SCOPE model was used to simulate training data sets, which were optimized with active learning. Gaussian process regression (GPR) algorithms were trained over the simulations to obtain trait-specific models. The inclusion of PCA and BR with 20 features led to the so-called GPR-20PCA and GPR-20BR models. The 20PCA models encompassed over 99.95% cumulative variance of the full spectral data, while the GPR-20BR models were based on the 20 most sensitive bands. Validation against in situ data obtained moderate to optimal results with normalized root mean squared error (NRMSE) from 13.9% (CWC) to 22.3% (CCC) for GPR-20PCA models, and NRMSE from 19.6% (CWC) to 29.1% (SLA) for GPR-20BR models. Overall, the GPR-20PCA slightly outperformed the GPR-20BR models for all six variables. To demonstrate mapping capabilities, both models were tested on a PRecursore IperSpettrale della Missione Applicativa (PRISMA) scene, spectrally resampled to Copernicus Hyperspectral Imaging Mission for the Environment (CHIME), over an agricultural test site (Jolanda di Savoia, Italy). The two strategies obtained plausible spatial patterns, and consistency between the two models was highest for FVC and LAI (R2=0.91, R2=0.86) and lowest for SLA mapping (R2=0.53). From these findings, we recommend implementing GPR-20PCA models as the most efficient strategy for the retrieval of multiple crop traits from hyperspectral data streams. Hence, this workflow will support and facilitate the preparations of traits retrieval models from the next-generation operational CHIME.
Katja Berger
added a research item
The monitoring of soil moisture content (SMC) at very high spatial resolution (<10 m) using unmanned aerial systems (UAS) is of high interest for precision agriculture and the validation of large scale SMC products. Data-driven approaches are the most common method to retrieve SMC with UAS-borne data at water limited sites over non-disturbed agricultural crops. A major disadvantage of data-driven algorithms is the limited transferability in space and time and the need of a high number of ground reference samples. Physically-based approaches are less dependent on the amount of samples and are transferable in space and time. This study explores the potential of (1) a hybrid method targeting the soil brightness factor of the PROSAIL model using a variational heteroscedastic Gaussian Processes regression (VHGPR) algorithm, and (2) a data-driven method employing VHGPR for the retrieval of SMC over three grassland sites based on UAS-borne VIS–NIR (399–1001 nm) hyperspectral data. The sites were managed by mowing (Fendt), grazing (Grosses Bruch) and irrigation (Marquardt). With these distinct local pre-conditions we aimed to identify factors that favor and limit the retrieval of SMC. The hybrid approach presented encouraging results in Marquardt (RMSE = 1.5 Vol_%, R² = 0.2). At the permanent grassland sites (Fendt, Grosses Bruch) the thatch layer jeopardized the application of the hybrid model. We identified the complex canopy structure of grassland as the main factor impacting the hybrid SMC retrieval. The data-driven approach showed high accuracy for Fendt (R² = 0.84, RMSE = 8.66) and Marquardt (R² = 0.4, RMSE = 10.52). All data-driven models build on the LAI-SMC relationship. However, this relationship was hampered by mowing (Fendt), leading to a lack of transferability in time. The alteration of plant traits by grazing prevents finding a relationship with SMC in Grosses Bruch. In Marquardt, we identified the timelag between changes in SMC and plant response as the main reason of decrease in model accuracy. Yet, the model performance is accurate in undisturbed and water-limited areas (Marquardt). The analysis points to challenges that need to be tackled in future research and opens the discussion for the development of robust models to retrieve high resolution SMC from UAS-borne remote sensing observations.
Katja Berger
added an update
Dear all, please note that a new project was created by SENSECO WG 1 to address all relevant publications and outcomes of the recent spatial scaling challenge project: https://www.researchgate.net/project/Spatial-Scaling-Challenge-COST-Action-CA17134-SENSECO-Working-Group-1
Please follow!
 
Jochem Verrelst
added a research item
National and International space agencies are determined to keep their fingers on the pulse of crop monitoring through Earth Observation (EO) satellites, which is typically tackled with optical imagery. In this regard, there has long been a trade-off between repetition time and spatial resolution. Another limitation of optical remotely sensed data is their typical discontinuity in time, caused by cloud cover or adverse atmospheric effects. Enduring clouds over agricultural fields can mask key stages of crop growth, leading to uncertainties in crop monitoring practices such as yield predictions. Gap-filling methods can provide a key solution for accurate crop phenology characterization. This chapter first provides a historical overview of EO missions dedicated to crop monitoring. Then, it addresses the rapidly evolving fields of gap-filling and land surface phenology (LSP) metrics calculation using a new in-house developed toolbox, DATimeS. These techniques have been put into practice for homogeneous and heterogeneous demonstration landscapes over the United States. Time series of Difference Vegetation Index (DVI) were processed from two EO data sources: high spatial resolution Sentinel-2 and, low spatial resolution MODIS data. LSP metrics such as start and end of season were calculated after gap filling processing at 1km resolution. Over the homogeneous area both S2 and MODIS are well able to capture the phenology trends of the dominant crop and LSP metrics were successfully mapped. Conversely, the MODIS dataset presented more difficulties than S2 to capture the phenology trend of winter wheat over heterogeneous landscape.
Jochem Verrelst
added a research item
Space-based cropland phenology monitoring substantially assists agricultural managing practices and plays an important role in crop yield predictions. Multitemporal satellite observations allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or by deriving biophysical variables. The Nile Delta represents about half of all agricultural lands of Egypt. In this region, intensifying farming systems are predominant and multi-cropping rotations schemes are increasing, requiring a high temporal and spatial resolution monitoring for capturing successive crop growth cycles. This study presents a workflow for cropland phenology characterization and mapping based on time series of green Leaf Area Index (LAI) generated from NASA’s Harmonized Landsat 8 (L8) and Sentinel-2 (S2) surface reflectance dataset from 2016 to 2019. LAI time series were processed for each satellite dataset, which were used separately and combined to identify seasonal dynamics for a selection of crop types (wheat, clover, maize and rice). For the combination of L8 with S2 LAI products, we proposed two time series smoothing and fitting methods: (1) the Savitzky–Golay (SG) filter and (2) the Gaussian Processes Regression (GPR) fitting function. Single-sensor and L8-S2 combined LAI time series were used for the calculation of key crop Land Surface Phenology (LSP) metrics (start of season, end of season, length of season), whereby the detection of cropland growing seasons was based on two established threshold methods, i.e., a seasonal or a relative amplitude value. Overall, the developed phenology extraction scheme enabled identifying up to two successive crop cycles within a year, with a superior performance observed for the seasonal than for the relative threshold method, in terms of consistency and cropland season detection capability. Differences between the time series collections were analyzed by comparing the phenology metrics per crop type and year. Results suggest that L8-S2 combined LAI data streams with GPR led to a more precise detection of the start and end of growing seasons for most crop types, reaching an overall detection of 74% over the total planted crops versus 69% with S2 and 63% with L8 alone. Finally, the phenology mapping allowed us to evaluate the spatial and temporal evolution of the croplands over the agroecosystem in the Nile Delta.
Jochem Verrelst
added a research item
Mangrove forests provide vital ecosystem services. The increasing threats to mangrove forest extent and fragmentation can be monitored from space. Accurate spatially explicit quantification of key vegetation characteristics of mangroves, such as leaf area index (LAI), would further advance our monitoring efforts to assess ecosystem health and functioning. Here, we investigated the potential of radiative transfer models (RTM), combined with active learning (AL), to estimate LAI from Sentinel-2 spectral reflectance in the mangrove-dominated region of Ngoc Hien, Vietnam. We validated the retrieval of LAI estimates against in-situ measurements based on hemispherical photography and compared against red-edge NDVI and the Sentinel Application Platform (SNAP) biophysical processor. Our results highlight the performance of physics-based machine learning using Gaussian processes regression (GPR) in combination with AL for the estimation of mangrove LAI. Our AL-driven hybrid GPR model substantially outperformed SNAP (R2 = 0.77 and 0.44 respectively) as well as the red-edge NDVI approach. Comparing two canopy RTMs, the highest accuracy was achieved by PROSAIL (RMSE = 0.13 m2.m−2, NRMSE = 9.57%, MAE = 0.1 m2.m−2). The successful retrieval of mangrove LAI from Sentinel-2 can overcome extensive reliance on scarce in-situ measurements for training seen in other approaches and present a more scalable applicability by relying on the universal principles of physics in combination with uncertainty estimates. AL-based GPR models using RTM simulations allow us to adapt the genericity of RTMs to the peculiarities of distinct ecosystems such as mangrove forests with limited ancillary data. These findings bode potential for retrieving a wider range of vegetation variables to quantify large-scale mangrove ecosystem dynamics in space and time.
Jochem Verrelst
added a research item
Thanks to the emergence of cloud-computing platforms and the ability of machine learning methods to solve prediction problems efficiently, this work presents a workflow to automate spatiotemporal mapping of essential vegetation traits from Sentinel-3 (S3) imagery. The traits included leaf chlorophyll content (LCC), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fractional vegetation cover (FVC), being fundamental for assessing photosynthetic activity on Earth. The workflow involved Gaussian process regression (GPR) algorithms trained on top-of-atmosphere (TOA) radiance simulations generated by the coupled canopy radiative transfer model (RTM) SCOPE and the atmospheric RTM 6SV. The retrieval models, named to S3-TOA-GPR-1.0, were directly implemented in Google Earth Engine (GEE) to enable the quantification of the traits from TOA data as acquired from the S3 Ocean and Land Colour Instrument (OLCI) sensor. Following good to high theoretical validation results with normalized root mean square error (NRMSE) ranging from 5% (FAPAR) to 19% (LAI), a three fold evaluation approach over diverse sites and land cover types was pursued: (1) temporal comparison against LAI and FAPAR products obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) for the time window 2016–2020, (2) spatial difference mapping with Copernicus Global Land Service (CGLS) estimates, and (3) direct validation using interpolated in situ data from the VALERI network. For all three approaches, promising results were achieved. Selected sites demonstrated coherent seasonal patterns compared to LAI and FAPAR MODIS products, with differences between spatially averaged temporal patterns of only 6.59%. In respect of the spatial mapping comparison, estimates provided by the S3-TOA-GPR-1.0 models indicated highest consistency with FVC and FAPAR CGLS products. Moreover, the direct validation of our S3-TOA-GPR-1.0 models against VALERI estimates indicated good retrieval performance for LAI, FAPAR and FVC. We conclude that our retrieval workflow of spatiotemporal S3 TOA data processing into GEE opens the path towards global monitoring of fundamental vegetation traits, accessible to the whole research community.
Jochem Verrelst
added a research item
Mapping crop variables at different growth stages is crucial to inform farmers and plant breeders about the crop status. For mapping purposes, inversion of canopy radiative transfer models (RTMs) is a viable alternative to parametric and non-parametric regression models, which often lack transferability in time and space. Due to the physical nature of RTMs, inversion outputs can be delivered in sound physical units that reflect the underlying processes in the canopy. In this study, we explored the capabilities of the coupled leaf–canopy RTM PROSAIL applied to high-spatial-resolution (0.015 m) multispectral unmanned aerial vehicle (UAV) data to retrieve the leaf chlorophyll content (LCC), leaf area index (LAI) and canopy chlorophyll content (CCC) of sweet and silage maize throughout one growing season. Two different retrieval methods were tested: (i) applying the RTM inversion scheme to mean reflectance data derived from single breeding plots (mean reflectance approach) and (ii) applying the same inversion scheme to an orthomosaic to separately retrieve the target variables for each pixel of the breeding plots (pixel-based approach). For LCC retrieval, soil and shaded pixels were removed by applying simple vegetation index thresholding. Retrieval of LCC from UAV data yielded promising results compared to ground measurements (sweet maize RMSE = 4.92g/2, silage maize RMSE = 3.74g/2) when using the mean reflectance approach. LAI retrieval was more challenging due to the blending of sunlit and shaded pixels present in the UAV data, but worked well at the early developmental stages (sweet maize RMSE = 0.70m2/m2, silage RMSE = 0.61m2/m2 across all dates). CCC retrieval significantly benefited from the pixel-based approach compared to the mean reflectance approach (RMSEs decreased from 45.6 to 33.1 g/m2). We argue that high-resolution UAV imagery is well suited for LCC retrieval, as shadows and background soil can be precisely removed, leaving only green plant pixels for the analysis. As for retrieving LAI, it proved to be challenging for two distinct varieties of maize that were characterized by contrasting canopy geometry.
Jochem Verrelst
added a research item
The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval models are of interest to run in these platforms as they combine the advantages of physically- based radiative transfer models (RTM) with the flexibility of machine learning regression algorithms. Previous research with GEE primarily relied on processing bottom-of-atmosphere (BOA) reflectance data, which requires atmospheric correction. In the present study, we implemented hybrid models directly into GEE for processing Sentinel-2 (S2) Level-1C (L1C) top-of-atmosphere (TOA) reflectance data into crop traits. To achieve this, a training dataset was generated using the leaf-canopy RTM PROSAIL in combination with the atmospheric model 6SV. Gaussian process regression (GPR) retrieval models were then established for eight essential crop traits namely leaf chlorophyll content, leaf water content, leaf dry matter content, fractional vegetation cover, leaf area index (LAI), and upscaled leaf variables (i.e., canopy chlorophyll content, canopy water content and canopy dry matter content). An important pre-requisite for implementation into GEE is that the models are sufficiently light in order to facilitate efficient and fast processing. Successful reduction of the training dataset by 78% was achieved using the active learning technique Euclidean distance-based diversity (EBD). With the EBD-GPR models, highly accurate validation results of LAI and upscaled leaf variables were obtained against in situ field data from the validation study site Munich-North-Isar (MNI), with normalized root mean square errors (NRMSE) from 6% to 13%. Using an independent validation dataset of similar crop types (Italian Grosseto test site), the retrieval models showed moderate to good performances for canopy-level variables, with NRMSE ranging from 14% to 50%, but failed for the leaf-level estimates. Obtained maps over the MNI site were further compared against Sentinel-2 Level 2 Prototype Processor (SL2P) vegetation estimates generated from the ESA Sentinels' Application Platform (SNAP) Biophysical Processor, proving high consistency of both retrievals (R2 from 0.80 to 0.94). Finally, thanks to the seamless GEE processing capability, the TOA-based mapping was applied over the entirety of Germany at 20 m spatial resolution including information about prediction uncertainty. The obtained maps provided confidence of the developed EBD-GPR retrieval models for integration in the GEE framework and national scale mapping from S2-L1C imagery. In summary, the proposed retrieval workflow demonstrates the possibility of routine processing of S2 TOA data into crop traits maps at any place on Earth as required for operational agricultural applications.
Jochem Verrelst
added a research item
Monitoring cropland phenology from optical satellite data remains a challenging task due to the influence of clouds and atmospheric artifacts. Therefore, measures need to be taken to overcome these challenges and gain better knowledge of crop dynamics. The arrival of cloud computing platforms such as Google Earth Engine (GEE) has enabled us to propose a Sentinel-2 (S2) phenology end-to-end processing chain. To achieve this, the following pipeline was implemented: (1) the building of hybrid Gaussian Process Regression (GPR) retrieval models of crop traits optimized with active learning, (2) implementation of these models on GEE (3) generation of spatiotemporally continuous maps and time series of these crop traits with the use of gap-filling through GPR fitting, and finally, (4) calculation of land surface phenology (LSP) metrics such as the start of season (SOS) or end of season (EOS). Overall, from good to high performance was achieved, in particular for the estimation of canopy-level traits such as leaf area index (LAI) and canopy chlorophyll content, with normalized root mean square errors (NRMSE) of 9% and 10%, respectively. By means of the GPR gap-filling time series of S2, entire tiles were reconstructed, and resulting maps were demonstrated over an agricultural area in Castile and Leon, Spain, where crop calendar data were available to assess the validity of LSP metrics derived from crop traits. In addition, phenology derived from the normalized difference vegetation index (NDVI) was used as reference. NDVI not only proved to be a robust indicator for the calculation of LSP metrics, but also served to demonstrate the good phenology quality of the quantitative trait products. Thanks to the GEE framework, the proposed workflow can be realized anywhere in the world and for any time window, thus representing a shift in the satellite data processing paradigm. We anticipate that the produced LSP metrics can provide meaningful insights into crop seasonal patterns in a changing environment that demands adaptive agricultural production.
Katja Berger
added a research item
Non-photosynthetic vegetation (NPV) biomass has been identified as a priority variable for upcoming spaceborne imaging spectroscopy missions, calling for a quantitative estimation of lignocellulosic plant material as opposed to the sole indication of surface coverage. Therefore, we propose a hybrid model for the retrieval of non-photosynthetic cropland biomass. The workflow included coupling the leaf optical model PROSPECT-PRO with the canopy reflectance model 4SAIL, which allowed us to simulate NPV biomass from carbon-based constituents (CBC) and leaf area index (LAI). PROSAIL-PRO provided a training database for a Gaussian process regression (GPR) algorithm, simulating a wide range of non-photosynthetic vegetation states. Active learning was employed to reduce and optimize the training data set. In addition, we applied spectral dimensionality reduction to condense essential information of non-photosynthetic signals. The resulting NPV-GPR model was successfully validated against soybean field data with normalized root mean square error (nRMSE) of 13.4% and a coefficient of determination (R2) of 0.85. To demonstrate mapping capability, the NPV-GPR model was tested on a PRISMA hyperspectral image acquired over agricultural areas in the North of Munich, Germany. Reliable estimates were mainly achieved over senescent vegetation areas as suggested by model uncertainties. The proposed workflow is the first step towards the quantification of non-photosynthetic cropland biomass as a next-generation product from near-term operational missions, such as CHIME.
Jochem Verrelst
added a research item
The retrieval of sun-induced fluorescence (SIF) from hyperspectral radiance data grew to maturity with research activities around the FLuorescence EXplorer satellite mission FLEX, yet full-spectrum estimation methods such as the spectral fitting method (SFM) are computationally expensive. To bypass this computational load, this work aims to approximate the SFM-based SIF retrieval by means of statistical learning, i.e., emulation. While emulators emerged as fast surrogate models of simulators, the accuracy-speedup trade-offs are still to be analyzed when the emulation concept is applied to experimental data. We evaluated the possibility of approximating the SFM-like SIF output directly based on radiance data while minimizing the loss in precision as opposed to SFM-based SIF. To do so, we implemented a double principal component analysis (PCA) dimensionality reduction, i.e., in both input and output, to achieve emulation of multispectral SIF output based on hyperspectral radiance data. We then evaluated systematically: (1) multiple machine learning regression algorithms, (2) number of principal components, (3) number of training samples, and (4) quality of training samples. The best performing SIF emulator was then applied to a HyPlant flight line containing at sensor radiance information, and the results were compared to the SFM SIF map of the same flight line. The emulated SIF map was quasi-instantaneously generated, and a good agreement against the reference SFM map was obtained with a R2 of 0.88 and NRMSE of 3.77%. The SIF emulator was subsequently applied to 7 HyPlant flight lines to evaluate its robustness and portability, leading to a R2 between 0.68 and 0.95, and a NRMSE between 6.42% and 4.13%. Emulated SIF maps proved to be consistent while processing time was in the order of 3 min. In comparison, the original SFM needed approximately 78 min to complete the SIF processing. Our results suggest that emulation can be used to efficiently reduce computational loads of SIF retrieval methods.
Katja Berger
added a research item
Satellite imaging spectroscopy for terrestrial applications is reaching maturity with recently launched and up-coming science-driven missions, e.g. PRecursore IperSpettrale della Missione Applicativa (PRISMA) and Environmental Mapping and Analysis Program (EnMAP), respectively. Moreover, the high-priority mission candidate Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) is expected to globally provide routine hyperspectral observations to support new and enhanced services for, among others, sustainable agricultural and biodiversity management. Thanks to the provision of contiguous visible-to-shortwave infrared spectral data, hyperspectral missions open enhanced opportunities for the development of new-generation retrieval models of multiple vegetation traits. Among these, canopy nitrogen content (CNC) is one of the most promising variables given its importance for agricultural monitoring applications. This work presents the first hybrid CNC retrieval model for the operational delivery from spaceborne imaging spectroscopy data. To achieve this, physically-based models were combined with machine learning regression algorithms and active learning (AL). The key concepts involve: (1) coupling the radiative transfer models PROSPECT-PRO and SAIL for the generation of a wide range of vegetation states as training data, (2) using dimensionality reduction to deal with collinearity, (3) applying an AL technique in combination with Gaussian process regression (GPR) for fine-tuning the training dataset on in field collected data, and (4) adding non-vegetated spectra to enable the model to deal with spectral heterogeneity in the image. The final CNC model was successfully validated against field data achieving a low root mean square error (RMSE) of 3.4 g/m 2 and coefficient of determination (R 2) of 0.7. The model was applied to a PRISMA image acquired over agricultural areas in the North of Munich, Germany. Mapping aboveground CNC yielded reliable estimates over the whole landscape and meaningful associated uncertainties. These promising results demonstrate the feasibility of routinely quantifying CNC from space, such as in an operational context as part of the future CHIME mission.
Katja Berger
added a research item
The inference of functional vegetation traits from remotely sensed signals is key to providing efficient information for multiple plant-based applications and to solve related problems [...]
Katja Berger
added a research item
In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and biophysical crop traits were developed for both S2 bottom-of-atmosphere (BOA) L2A and S2 top-of-atmosphere (TOA) L1C data. A variational heteroscedastic Gaussian process regression (VHGPR) algorithm was trained with simulations generated by the combined leaf-canopy reflectance model PROSAILat the BOA scale and further combined with the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) atmosphere model at the TOA scale. Established VHGPR models were then applied to S2 L1C and L2A reflectance data for mapping: leaf chlorophyll content (Cab), leaf water content (Cw), fractional vegetation coverage (FVC), leaf area index (LAI), and upscaled leaf biochemical compounds, i.e., LAI ∗ Cab (laiCab) and LAI ∗ Cw (laiCw). Estimated variables were validated using in situ reference data collected during the Munich-North-Isar field campaigns within growing seasons of maize and winter wheat in the years 2017 and 2018. For leaf biochemicals, retrieval from BOA reflectance slightly outperformed results from TOA reflectance, e.g., obtaining a root mean squared error (RMSE) of 6.5 μμg/cm2 (BOA) vs. 8 μμg/cm2 (TOA) in the case of Cab. For the majority of canopy-level variables, instead, estimation accuracy was higher when using TOA reflectance data, e.g., with an RMSE of 139 g/m2 (BOA) vs. 113 g/m2 (TOA) for laiCw. Derived maps were further compared against reference products obtained from the ESA Sentinel Application Platform (SNAP) Biophysical Processor. Altogether, the consistency between L1C and L2A retrievals confirmed that crop traits can potentially be estimated directly from TOA reflectance data. Successful mapping of canopy-level crop traits including information about prediction confidence suggests that the models can be transferred over spatial and temporal scales and, therefore, can contribute to decision-making processes for cropland management.
Katja Berger
added a research item
With an upcoming unprecedented stream of imaging spectroscopy data, there is a rising need for tools and software applications exploiting the spectral possibilities to extract relevant information on an operational basis. In this study, we investigate the potential of a scientific processor designed to quantify biophysical and biochemical crop traits from spectroscopic imagery of the upcoming Environmental Mapping and Analysis Program (EnMAP) satellite. Said processor relies on a hybrid retrieval workflow executing pre-trained machine learning regression models fast and efficiently based on training data from a lookup table of synthetic vegetation spectra and their associated parameterization of the well-known radiative transfer model (RTM) PROSAIL. The established models provide spatial information about leaf area index (LAI), average leaf inclination angle (ALIA), leaf chlorophyll content (Cab) and leaf mass per area (Cm). In contrast to using site-specific training data, the approach facilitates a universal application without the need to integrate a priori information into the processor. Four machine learning algorithms, namely artificial neural networks (ANN), random forest regression (RFR), support vector machine regression (SVR), and Gaussian process regression (GPR), were found to estimate biophysical and biochemical variables of unseen targets with high performance (relative error scores < 10%). ANNs excelled in terms of accuracy, model size and execution time when the 242 spectral bands were transformed into 15 principal components, the signals of which were scaled by a z-transformation. Validation using in situ data from the SPARC03 Barrax campaign dataset revealed an overall good estimation of measured functional traits, for instance for LAI with root mean squared error (RMSE) of 0.81 m² m⁻², and for Cab RMSE of 6.2 µg cm⁻² with the ANN model. Moreover, both crop traits could be successfully mapped using a pseudo-EnMAP scene revealing plausible within-field patterns. Conformity with LAI output of the SNAP biophysical processor was found especially for grassland and maize in the vegetative stages. Based on these findings, ANN models are considered the best choice for implementation of a hybrid retrieval workflow within the context of operational agricultural crop traits monitoring from future satellite imaging spectroscopy.
Katja Berger
added a research item
The current exponential increase of spatiotemporally explicit data streams from satellite-based Earth observation missions offers promising opportunities for global vegetation monitoring. Intelligent sampling through active learning (AL) heuristics provides a pathway for fast inference of essential vegetation variables by means of hybrid retrieval approaches, i.e., machine learning regression algorithms trained by radiative transfer model (RTM) simulations. In this study we summarize AL theory and perform a brief systematic literature survey about AL heuristics used in the context of Earth observation regression problems over terrestrial targets. Across all relevant studies it appeared that: (i) retrieval accuracy of AL-optimized training data sets outperformed models trained over large randomly sampled data sets, and (ii) Euclidean distance-based (EBD) diversity method tends to be the most efficient AL technique in terms of accuracy and computational demand. Additionally, a case study is presented based on experimental data employing both uncertainty and diversity AL criteria. Hereby, a a simulated training data base by the PROSAIL-PRO canopy RTM is used to demonstrate the benefit of AL techniques for the estimation of total leaf carotenoid content (Cxc) and leaf water content (Cw). Gaussian process regression (GPR) was incorporated to minimize and optimize the training data set with AL. Training the GPR algorithm on optimally AL-based sampled data sets led to improved variable retrievals compared to training on full data pools, which is further demonstrated on a mapping example. From these findings we can recommend the use of AL-based sub-sampling procedures to select the most informative samples out of large training data pools. This will not only optimize regression accuracy due to exclusion of redundant information, but also speed up processing time and reduce final model size of kernel-based machine learning regression algorithms, such as GPR. With this study we want to encourage further testing and implementation of AL sampling methods for hybrid retrieval workflows. AL can contribute to the solution of regression problems within the framework of operational vegetation monitoring using satellite imaging spectroscopy data, and may strongly facilitate data processing for cloud-computing platforms.
Katja Berger
added a research item
Models of radiative transfer (RT) are important tools for remote sensing of vegetation, allowing for forward simulations of remotely sensed data as well as inverse estimation of biophysical and biochemical traits from vegetation optical properties. Estimation of foliar protein content is the key to monitor the nitrogen cycle in terrestrial ecosystems, in particular to assess the photosynthetic capacity of plants and to improve nitrogen management in agriculture. However, until now physically based leaf RT models have not allowed for proper spectral decomposition and estimation of leaf dry matter as nitrogen-based proteins and other carbon-based constituents (CBC) from optical properties of fresh and dry foliage. Such an achievement is the key for subsequent upscaling to canopy level and for development of new Earth observation applications. Therefore, we developed a new version of the PROSPECT model, named PROSPECT-PRO, which separates the nitrogen-based constituents (proteins) from CBC (including cellulose, lignin, hemicellulose, starch and sugars). PROSPECT-PRO was calibrated and validated on subsets of the LOPEX dataset, accounting for both fresh and dry broadleaf and grass samples. We applied an iterative model inversion optimization algorithm and identified the optimal spectral ranges for retrieval of proteins and CBC. When combining leaf reflectance and transmittance within the selected optimal spectral domains, PROSPECT-PRO inversions revealed similarly accurate CBC estimates of fresh and dry leaf samples (respective validation R2 = 0.96 and 0.95, NRMSE = 9.6% and 13.4%), whereas a better performance was obtained for fresh than for dry leaves when estimating proteins (respective validation R2 = 0.79 and 0.57, NRMSE = 15.1% and 26.1%). The accurate estimation of leaf constituents for fresh samples is attributed to the optimal spectral feature selection procedure. We further tested the ability of PROSPECT-PRO to estimate leaf mass per area (LMA) as the sum of proteins and CBC using independent datasets acquired for numerous plant species. Results showed that both PROSPECT-PRO and PROSPECT-D inversions were able to produce comparable LMA estimates across an independent dataset gathering 1685 leaf samples (validation R2 = 0.90 and NRMSE = 16.5% for PROSPECT-PRO, and R2 = 0.90 and NRMSE = 18.3% for PROSPECT-D). Findings also revealed that PROSPECT-PRO is capable of assessing the carbon-to-nitrogen ratio based on the retrieved CBC-to-proteins ratio (R2 = 0.87 and NRMSE = 15.7% for fresh leaves, and R2 = 0.65 and NRMSE = 28.1% for dry leaves). The performance assessment of newly designed PROSPECT-PRO demonstrates a promising potential for its involvement in precision agriculture and ecological applications aiming at estimation of leaf carbon and nitrogen contents from observations of current and forthcoming airborne and satellite imaging spectroscopy sensors.
Andreas Hueni
added a research item
"WG4 Instruments and Uncertainty Questionnaire: Results" presents the results of a questionnaire conducted in 2019 within the SENSECO COST action. But it is much more than that. This work starts off with a well-written description of the concept of uncertainty. Author Luc Sierro has well risen to the challenge of presenting the usually dry topic of uncertainty to an audience that will, typically, not only include hardened statisticians but regular practitioners of field spectroscopy and environmental monitoring. Consequently, the need to deal with uncertainties should become evident to all readers. A section on remote sensing as applied to environmental monitoring gives a good introduction about the processes of calibration, characterisation, validation and traceability. The main part deals with the SENSECO Questionnaire by presenting the survey results per question. The discussion synthesises these results and provides a critical interpretation.
Karolina Sakowska
added a project goal
The COST Action SENSECO brings together scientists working in the domain of optical Earth Observation (EO) measurements of vegetated ecosystems at various spatial and temporal scales. The main aim of SENSECO is to ensure that the practices of EO measurements for ecophysiology are compatible at various scales, enabling synergistic multi-sensor use and transferability to guarantee the knowledge exchange on scaling methods in a European context.
SENSECO is structured into four working groups:
[WG1] Scaling gap
[WG2] Temporal gap
[WG3] Sensor synergies
[WG4] Data quality
For more information, updates and useful links, please visit our website:
Get involved ! Become a SENSECO Member !
To join SENSECO follow simple instructions provided at our website:
We hope to see you at one of our meetings !