Project

Basin-scale groundwater circulation

Goal: Quantifying processes of groundwater circulation in the shallow and deep parts of basins.

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
46
Reads
2 new
235

Project log

Xiao-Wei Jiang
added 2 research items
Causes and water sources of flowing artesian wells attracted the interest of many hydrogeologists throughout history, however, a quantitative model that satisfactorily considers the roles of topography, groundwater recharge/discharge and aquitards on hydraulics of flowing wells is still lacking. In this study, a three-layer river-valley basin with a recharge boundary is used to obtain the basinal flow field, spatial distribution and transient discharge rates of flowing wells. Even if there is an aquitard separating the unconfined and the confined aquifer, groundwater discharge to the river still plays a critical role in occurrence of flowing wells. An aquitard with lower permeability would enlarge the zone with flowing wells, implying that flowing wells are more likely to occur in basins with continuous aquitards. By comparing flowpaths and inter-aquifer leakages before and after numerically installing a flowing well in a three-layer basin, we find decreased upward leakage in the discharge limb plays a much larger role than increased downward leakage in the recharge limb in the stable discharge rate of a flowing well. This recognition is different from previous studies where the stable discharge rate is supported only by downward leakage from the overlying aquifer. By considering well hydraulics in a basinal background flow field, this study improves understanding of the mechanisms of flowing artesian wells and the interaction of surface water and deep groundwater, indicating that flowing wells are valuable for sampling deep groundwater representative of deep and old groundwater in the discharge area of a basin.
Lithium (Li) isotopes have shown large potential in tracing weathering in various water bodies, but there is limited study on Li isotopes in subsurface conditions where CO2 has been largely consumed. In this study, we use a thick sandstone aquifer in the Ordos Basin, NW China, as a natural setting to investigate the behaviors of Li isotopes in hydrogeochemical conditions with different concentrations of dissolved CO2. For young groundwater in the recharge area (group R) where CO2 is abundant (mean PCO2 = 10-2.5 atm), clay formation accompanying with weathering leads to the enrichment of ⁷Li in groundwater. The four deep samples in the recharge area have uniform Li/Na ratios (with a mean of 2.52 μmol/mmol) and δ⁷Li (with a mean of 25.0‰), corresponding to a mean Li removal rate of 81.2% compared with the sandstone leachate. For groundwater in the shallow part of the discharge area (group D1), Li was firstly removed by clay formation during weathering in the recharge area and was later removed by physisorption when CO2 becomes much lower (mean PCO2 = 10-3.1 atm). Different degrees of weathering lead to a wide range of δ⁷Li varying from 19.7‰ in the deepest well to 33.0‰ in the shallowest well. The proportion of Li removal caused by physisorption is found to increase with groundwater age. After the stage of Li removal by adsorption, Li was released in the deeper part of the discharge area (group D2), and the positive correlation of δ⁷Li versus Li/Na is explained by a ternary mixing model. The endmember of water brought by cation exchange is inferred to have a heavier δ⁷Li than sandstone leachate, demonstrating that cation exchange could cause an enrichment of ⁷Li in water. This study enhances our understanding of the controlling factors of Li isotopes in deep groundwater with low dissolved CO2, which have implications for the application of Li isotopes in subsurface water.
Xu-Sheng Wang
added 3 research items
In a vadose zone the soil water content can change seasonally, driven by seasonal variations of meteorological factors. This dynamic behavior is depth-dependent, which controls the groundwater recharge from infiltration, and plays an essential role in the environments in arid and semi-arid regions. In particular, the depth-dependent seasonal variations of soil water were investigated in the Badain Jaran Desert (BJD), China, where the vadose zone is thick. The monitoring results showed that the amplitudes of temperature and soil moisture content in the shallow vadose zone (depth < 3 m) significantly decrease with depth. For the deep vadose zone (depth >3 m), the depth-dependent dynamic was synthetically estimated with both numerical and analytical models. Results show that the penetration depth of seasonal fluctuation is about 47 m, below which the infiltration flux stabilizes at a level of 30.7 ± 4 mm/yr. The depth to water table in the BJD is generally larger than 50 m, up to 480 m. As a consequence, groundwater recharge from infiltration in this area almost does not change in different seasons.
Streamline simulation in groundwater flow modeling is a time‐consuming process when a large number of streamlines are analyzed. We develop a parallelization method on Graphics processing units(GPUs) for the semi‐analytical particle tracking algorithm developed by Pollock(1988). Compute Unified Device Architecture (CUDA) was used to implement the parallel method. Forward and backward tracking of a streamline is handled by an individual thread. A GPU includes a grid of blocks where a block handles 32 threads. We use multi‐GPUs to accelerate streamline tracking in a flow model with millions of particles. The method was examined to simulate streamlines for identifying three‐dimensional (3D) flow systems in a Tóthian basin. The speedup exceeds 1000 when 8 NVIDIA GPUs are used to simulate 5 million or more streamlines. This article is protected by copyright. All rights reserved.
Unconfined aquifers beneath piedmont pluvial fans are widely distributed in front of mountains and proper for water supply with pumping wells. However, the catchment zone and capture zones of a pumping well in such an unconfined aquifer is not well known. We develop a preliminary simplified model where groundwater flows between a segmental inflow boundary and a discharge boundary of constant head. The catchment zone is delineated from numerical simulation via MODFLOW and MODPATH. Results are expressed with dimensionless variables and lumped parameters to show general behaviors. Sensitive analyses indicate that there are 4 types of the catchment zone according to different connections to the boundaries. The shape of the catchment zone is quantitatively analyzed with typical shape factors. Capture zones with respect to special travel times are identified from travel time distribution in the catchment zone. The modeling results can be applied in the design of water supply wells and delineation of protection zones at a site with similar hydrogeological conditions.
Zhi-Yuan Zhang
added 13 research items
As an indispensable component of groundwater circulation, groundwater evapotranspiration rate (ETG) estimation using water table fluctuations is a hot research topic in the past decades. However, most existing methods for estimating ETG using either diurnal or seasonal water table fluctuations are based on the assumptions that groundwater recharge equals 0 in the whole period and ETG equals 0 in a specific duration of time. The aim of the current study is to develop a method to estimate ETG when both assumptions do not apply. In the discharge area of a semi-arid catchment in the Ordos Plateau, NW China, it is found out that the water table fluctuations are influenced greatly by recharge, ETG and the vertical inflow rate (qin) in the seasonal scale but are controlled by atmospheric pressure instead of evapotranspiration in the diurnal scale, which implies that the existing methods are not applicable. Therefore, we propose a method to estimate ETG and qin using the seasonal water table fluctuations based on the assumption that ETG has a linear relationship to the reference evapotranspiration (ET0), which is readily available based on meteorological data. It is found out that qin is around 1.12 mm/d, and the ratio of ETG to ET0 is around 0.4. ETG in April through July with the highest ET0 of the year is found to be around 3 mm/d, which is much larger than qin, thus leads to significant decline in water table. ETG in November with the lowest ET0 of the unfrozen period is found to be 1.0 mm/d, which is slightly smaller than qin, thus results in a weak increase in water table. The vertical component of regional groundwater inflow is found to exceed precipitation recharge, indicating that regional groundwater inflow plays the major role on maintaining the shallow water table in the discharge area. Groundwater evapotranspiration is also found to exceed precipitation recharge in most time of the unfrozen period, indicating a specified-flux upper boundary with water loss in the discharge area of an arid catchment. The proposed method could be applied to similar study areas and is critical to understand the budget of groundwater.
Permeability loss with depth is a general trend in geological media and plays an essential role in subsurface fluid flow and solute transport. In the near surface zone where groundwater movement is active, the decrease in permeability with depth is dominated by the mechanical compaction of deformable media caused by the increase in lithostatic stress with depth. Instead of using empirical equations from statistical analysis, by considering the well-defined relationships among permeability, porosity, fracture aperture and effective stress under lithostatic conditions, new semi-empirical equations for the systematic depth-dependent permeability are derived, as well as the equations for the depth-dependent porosity in a porous medium and the depth-dependent fracture aperture in a fractured medium. The existing empirical equations can be included in the new equations as special cases under some simplification. These new semi-empirical equations perform better than previous equations to interpret the depth-dependent permeability of the Pierre Shale (with a maximum depth of approximately 4,500 m) and the granite at Stripa, Sweden (with a maximum depth of about 2,500 m).
The stagnant zones in nested flow systems have been assumed to be critical to accumulation of transported matter, such as metallic ions and hydrocarbons in drainage basins. However, little quantitative research has been devoted to prove this assumption. In this paper, the transport of age mass is used as an example to demonstrate that transported matter could accumulate around stagnation points. The spatial distribution of model age is analyzed in a series of drainage basins of different depths. We found that groundwater age has a local or regional maximum value around each stagnation point, which proves the accumulation of age mass. In basins where local, intermediate and regional flow systems are all well developed, the regional maximum groundwater age occurs at the regional stagnation point below the basin valley. This can be attributed to the long travel distances of regional flow systems as well as stagnancy of the water. However, when local flow systems dominate, the maximum groundwater age in the basin can be located around the local stagnation points due to stagnancy, which are far away from the basin valley. A case study is presented to illustrate groundwater flow and age in the Ordos Plateau, northwestern China. The accumulation of age mass around stagnation points is confirmed by tracer age determined by 14C dating in two boreholes and simulated age near local stagnation points under different dispersivities. The results will help shed light on the relationship between groundwater flow and distributions of groundwater age, hydrochemistry, mineral resources, and hydrocarbons in drainage basins.
Xu-Sheng Wang
added a research item
The groundwater divide within a plane has long been delineated as a water table ridge composed of the local top points of a water table. This definition has not been examined well for river basins. We developed a fundamental model of a two-dimensional unsaturated-saturated flow in a profile between two rivers. The exact groundwater divide can be identified from the boundary between two local flow systems and compared with the top of a water table. It is closer to the river of a higher water level than the top of a water table. The catchment area would be overestimated (up to ~50%) for a high river and underestimated (up to ~15%) for a low river by using the top of the water table. Furthermore, a pass-through flow from one river to another would be developed below two local flow systems when the groundwater divide is significantly close to a high river.
Xiao-Wei Jiang
added a research item
Groundwater sampled at the outlets of uncased flowing wells in a thick unconfined aquifer, which has undergone mixing, has been found to have hydrochemistry similar to deep groundwater in discharge areas. To identify the hydrodynamic causes, transient models of groundwater flow and age in a three-dimensional homogeneous unit basin with flowing wells are constructed to obtain flow rates in wells and groundwater mean age around wells. Inflow of groundwater to the well in the deep part leads to mixing of groundwater from different sources, and the finally mixed groundwater is found to have the same age as groundwater in the aquifer at a specific depth, termed the equivalent position (EP). EP is always found in the lower half of the flowing well, indicating that a mixed sample at the outlet could represent deep groundwater. Outflow from the well to the unconfined aquifer in the shallow part results in aging of groundwater around the well. For fully penetrating flowing wells in confined aquifers, EP is found in the upper half of the aquifer. The different relative depths of EP to the screen interval in the two types of flowing wells are mainly due to the profiles of horizontal velocity in the inflow segment, which is basically uniform in a confined aquifer but increases from zero to a maximum value in unconfined aquifers. Thus, groundwater at the outlets of topography-controlled flowing wells is a window of the deep part of a basin, and existing long-screen wells could have the potential for groundwater sampling.
Zhi-Yuan Zhang
added a research item
Compared with the numerous studies on river and soil waters, studies on Mg isotopes of groundwater are limited. In this study, a sandstone aquifer in the Ordos Basin, China with contrast contents of Mg in shallow and deep groundwater is selected to examine the behavior of Mg isotopes during groundwater circulation. The δ²⁶Mg values of shallow groundwater are within the range of widely reported results of groundwater, while those of deep groundwater are found to be as light as −3.30‰ to −2.13‰. Assuming that shallow groundwater is an endmember, ⁸⁷Sr/⁸⁶Sr ratios show that calcite dissolution has contribution to low δ²⁶Mg of deep groundwater, but mixing alone cannot explain the coupled low δ²⁶Mg and low Mg contents. The removal of Mg in deep groundwater is found to be mainly caused by incorporating into neoformed clay minerals, which further lowers δ²⁶Mg. For the deep groundwater samples denoted as G1 and G3, the relationship between δ²⁶Mg and 1/Mg has been quantitatively explained by the superposition of calcite dissolution and clay formation with a fractionation factor (αclay–water) of 1.0003. For samples denoted as G2, in addition to calcite dissolution and clay formation, high proportion of Mg in the residual solution are further removed via precipitation of low-Mg calcite, which leads to increased δ²⁶Mg. There are increasingly stronger degrees of clay formation in G3, G1, and G2 due to the increasingly longer travel distances and travel times of groundwater from recharge to discharge areas. This study enhances understanding on the factors controlling Mg isotopes of groundwater, as well as the geochemical processes of subsurface water-rock interactions in sandstone aquifers.
Zhi-Yuan Zhang
added a research item
The occurrence of flowing wells in basins has been found to be closely related to the discharge area with an upward hydraulic gradient. Unfortunately, previous studies on upward gradient induced wellbore flow with equaling total inflow (Qin) in the deep and total outflow (Qout) in the shallow could not explain the occurrence of flowing wells. By representing wells using the MNW2 Package imbedded in MODFLOW 2005, we obtain the exchange of groundwater between the aquifer and the well in the discharge area of 3D unit basins and identify three scenarios: Qin=Qout, Qin>Qout>0 and Qin>Qout=0. The relationship of Qin>Qout well explains why flowing wells only develop in a limited part of the discharge area. Sensitivity analysis shows that well location, water table undulation and basin length‐depth ratio do not change the profile of the ratio of cumulative flow rate in the flowing well to total inflow (Qv/Qin) versus the relative elevation in the inflow segment, zin*, but could significantly change the length of the inflow segment; well depth could change both the length of the inflow segment and the profile of Qv/Qin versus zin*. Based on numerical results in homogeneous and isotropic basins with different dimensions, the ratio of inflow in the lower half part of a flowing well to the total inflow is found to be at least 68% and could be close to 100%, indicating that water at the outlets of flowing wells with long open sections is mainly from the deep part of the well.
Xiao-Wei Jiang
added 3 research items
Although it has been increasingly acknowledged that groundwater flow pattern is complicated in the three-dimensional (3-D) domain, two-dimensional (2-D) water table-induced flow models are still widely used to delineate basin-scale groundwater circulation. However, the validity of 2-D cross-sectional flow field induced by water table has been seldom examined. Here, we derive the analytical solution of 3-D water table-induced hydraulic head in a Tóthian basin and then examine the validity of 2-D cross-sectional models by comparing the flow fields of selected cross sections calculated by the 2-D cross-sectional model with those by the 3-D model, which represents the “true” cases. For cross sections in the recharge or discharge area of the 3-D basin, even if head difference is not significant, the 2-D cross-sectional models result in flow patterns absolutely different from the true ones. For the cross section following the principal direction of groundwater flow, although 2-D cross-sectional models would overestimate the penetrating depth of local flow systems and underestimate the recharge/discharge flux, the flow pattern from the cross-sectional model is similar to the true one and could be close enough to the true one by adjusting the decay exponent and anisotropy ratio of permeability. Consequently, to determine whether a 2-D cross-sectional model is applicable, a comparison of hydraulic head difference between 2-D and 3-D solutions is not enough. Instead, the similarity of flow pattern should be considered to determine whether a cross-sectional model is applicable. This study improves understanding of groundwater flow induced by more natural water table undulations in the 3-D domain and the limitations of 2-D models accounting for cross-sectional water table undulation only.
The Ordos Basin is one of the most intensively studied groundwater basins in China. The Ordos Plateau, located in the north part of the Ordos Basin, is ideal to study the pattern of regional groundwater circulation induced by water-table undulations due to the wavy topography and the relatively simple aquifer systems with macroscopically homogeneous sandstone. In catchments located near the first-order divide, the water table is found to be a subdued replica of the topography, and the nonclosed water-table contours in topographic highs of a catchment are indicative of regional groundwater outflow to other catchments. In topographic lows, groundwater-fed lakes/rivers, topography-driven flowing wells, water-loving and/or salt-tolerant vegetation, and soap holes are all indicative of discharge areas. In discharge areas, although groundwater inflow from recharge areas is relatively stable, seasonal variations in groundwater recharge and evapotranspiration lead to significant seasonal fluctuations in the water table, which can be used to estimate groundwater inflow and evapotranspiration rates based on water balance at different stages of water-table change. In the lowest reaches of a complex basin, superposition of local flow systems on regional flow systems has been identified based on groundwater samples collected from wells with different depths and geophysical measurements of apparent resistivity, both of which can be used for characterizing groundwater flow systems. This study enhances understanding of the pattern of regional groundwater circulation in the Ordos Plateau, and also tests the effectiveness of methods for groundwater flow-system characterization.
Xiao-Wei Jiang
added a project goal
Quantifying processes of groundwater circulation in the shallow and deep parts of basins.